The reduction of CO 2 emissions associated with vehicle use is an important element of a global transition to sustainable mobility and is a major long-term challenge for society. Vehicle and fuel technologies are part of a global energy system, and assessing the impact of the availability of clean energy technologies and advanced vehicle technologies on sustainable mobility is a complex task. The global energy transition (GET) model accounts for interactions between the different energy sectors, and we illustrate its use to inform vehicle technology choices in a decarbonizing economy. The aim of this study is to assess how uncertainties in future vehicle technology cost, as well as how developments in other energy sectors, affect cost-effective fuel and vehicle technology choices. Given the uncertainties in future costs and efficiencies for light-duty vehicle and fuel technologies, there is no clear fuel/vehicle technology winner that can be discerned at the present time. We conclude that a portfolio approach with research and development of multiple fuel and vehicle technology pathways is the best way forward to achieve the desired result of affordable and sustainable personal mobility. The practical ramifications of this analysis are illustrated in the portfolio approach to providing sustainable mobility adopted by the Ford Motor Company.
References
[1]
IPCC. Climate Change 2007: The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2007.
[2]
United Nations Framework Convention on Climate Change (UNFCCC). Available online: http://unfccc.int/essential_background/convention/background/items/1353.php/ (accessed on 24 September 2010).
[3]
Rogelj, J.; Hare, W.; Lowe, J.; van Vuuren, D.P.; Riahi, K.; Matthews, B.; Hanaoka, T.; Jiang, K.; Meinshausen, M. Emission pathways consistent with a 2 °C global temperature limit. Nat. Clim. Change 2011, 1, 413–418, doi:10.1038/nclimate1258.
[4]
Wigley, T.M.L.; Richels, R.; Edmonds, J.A. Economic and environmental choices in the stabilization of atmospheric CO2 concentrations. Nature 1996, 379, 240–243, doi:10.1038/379240a0.
[5]
Wallington, T.J.; Anderson, J.E.; Winkler, S.L.; Grahn, M. M. Sustainable mobility: Insights from a global energy model. In Treatise on Sustainability Science and Engineering; Springer: New York, NY, USA, 2013.
[6]
World Business Council for Sustainable Development. Mobility 2030: Meeting the Challenges to Sustainability; WBCSD: Geneva, Switzerland, 2004.
[7]
Friedlingstein, P.; Houghton, R.A.; Marland, G.; Hackler, J.; Boden, T.A.; Conway, T.J.; Canadell, J.G.; Raupach, M.R.; Ciais, P.; Le Quéré, C. Update on CO2 emissions. Nat. Geosci. 2010, 3, 811–812, doi:10.1038/ngeo1022.
[8]
Azar, C.; Lindgren, K.; Andersson, B.A. Hydrogen or methanol in the transportation sector? In KFB-Report 2000:35, ISBN: 91–88371–90–5; Swedish Agency for Innovation Systems (VINNOVA): Stockholm, Sweden, 2000.
[9]
Azar, C.; Lindgren, K.; Andersson, B.A. Global energy scenarios meeting stringent CO2 constraints—Cost effective fuel choices in the transportation sector. Energy Policy 2003, 31, 961–976, doi:10.1016/S0301-4215(02)00139-8.
[10]
Azar, C.; Lindgren, K.; Larson, E.; Mollersten, K. Carbon capture and storage from fossil fuels and biomass—Costs and potential role in stabilizing the atmosphere. Clim. Change 2006, 74, 47–79, doi:10.1007/s10584-005-3484-7.
[11]
Grahn, M.; Azar, C.; Lindgren, K. The role of biofuels for transportation in CO2 emission reduction scenarios with a global versus a regional carbon cap. Biomass Bioenerg. 2009, 33, 360–371.
[12]
Grahn, M.; Azar, C.; Williander, M.I.; Anderson, J.E.; Mueller, S.A.; Wallington, T.J. Fuel and vehicle technology choices for passenger vehicles in achieving stringent CO2 targets: Connections between transportation and other energy sectors. Environ. Sci. Technol. 2009, 43, 3365–3371, doi:10.1021/es802651r.
[13]
Wallington, T.J.; Grahn, M.; Anderson, J.E.; Mueller, S.A.; Williander, M.I.; Lindgren, K. Low-CO2 electricity and hydrogen: A help or hindrance for electric and hydrogen vehicles? Environ. Sci. Technol. 2010, 44, 2702–2708.
[14]
Endo, E. Market penetration analysis of fuel cell vehicles in Japan by using the energy system model MARKAL. Int. J. Hydrog. Energy 2007, 32, 1347–1354, doi:10.1016/j.ijhydene.2006.10.015.
[15]
Turton, H.; Barreto, L. Automobile technology, hydrogen and climate change: A long term modelling analysis. Int. J. Altern. Propulsion 2007, 1, 397–426, doi:10.1504/IJAP.2007.013332.
[16]
Gül, T.; Kypreos, S.; Barreto, L. Hydrogen and Biofuels—A Modelling Analysis of Competing Energy Carriers for Western Europe. In Proceedings of the World Energy Congress “Energy Future in an Interdependent World”, Rome, Italy, 11–15 November 2007.
[17]
Anandarajah, G.; McDowall, W.; Ekins, P. Decarbonising road transport with hydrogen and electricity: Long term global technology learning scenarios. Int. J. Hydrog. Energy 2013, 38, 3419–3432, doi:10.1016/j.ijhydene.2012.12.110.
[18]
Girod, B.; van Vuuren, D.P.; Deetman, S. Global travel within the 2 °C climate target. Energy Policy 2012, 45, 152–166, doi:10.1016/j.enpol.2012.02.008.
[19]
Kyle, P.; Kim, S.H. Long-term implications of alternative light-duty vehicle technologies for global greenhouse gas emissions and primary energy demands. Energy Policy 2011, 39, 3012–3024, doi:10.1016/j.enpol.2011.03.016.
[20]
Girod, B.; van Vuuren, D.P.; Grahn, M.; Kitous, A.; Kim, S.H.; Kyle, P. Climate impact of transportation: A model comparison. Clim. Change 2013, doi:10.1007/s10584-012-0663-6.
[21]
Hua, T.Q.; Ahluwalia, R.K.; Peng, J.K.; Kromer, M.; Lasher, S.; McKenney, K.; Law, K.; Sinha, J. Technical assessment of compressed hydrogen storage tank systems for automotive applications. Int. J. Hydrog. Energy 2011, 36, 3037–3049, doi:10.1016/j.ijhydene.2010.11.090.
[22]
Ahluwalia, R.K.; Wang, X. Fuel cell systems for transportation: Status and trends. J. Power Sources 2008, 177, 167–176, doi:10.1016/j.jpowsour.2007.10.026.
[23]
Global Energy Perspectives; Nakicenovic, N., Grübler, A., McDonald, A., Eds.; IIASA/WEC, Cambridge University Press: London, UK, 1998; p. 317.
[24]
Johansson, T.B.; Kelly, H.; Reddy, A.K.N.; Williams, R.H. Renewable Energy—Sources for Fuels and Electricity; Burnham, L., Ed.; Island Press: Washington, DC, USA, 1993.
[25]
Doornbosch, R.; Steenblik, R. Round Table on Sustainable Development. Biofuels: Is the Cure Worse Than the Disease? Report No. SG/SD/RT(2007)3/REV1; Organisation for Economic Co-operation and Development: Paris, France, 2007. Available online: http://www.oecd.org/dataoecd/9/3/39411732.pdf (accessed on 12 March 2012).
[26]
Hoogwijk, M. On the Global and Regional Potential of Renewable Energy Sources. Ph.D. Thesis, Utrecht University, Utrecht, The Netherlands, 2004.
[27]
British Petroleum, Statistical Guide of World Energy 2008. Available online: http://www.bp.com/ (accessed on 2 September 2009).
[28]
Swedish EPA. Excel Document: Emissionsfaktorer V?xthusgaser och Luftf?roreningar fr?n F?rbr?nning. Available online: http://www.naturvardsverket.se/ (accessed on 27 January 2013).
[29]
IPCC. Special report on carbon dioxide capture and storage. In Prepared by Working Group III of the Intergovernmental Panel on Climate Change; Metz, B., Davidson, O., de Coninck, H.C., Loos, M., Meyer, L.A., Eds.; Cambridge University Press: Cambridge, UK, New York, NY, USA, 2005; p. 442.
[30]
Grahn, M.; Anderson, J.E.; Wallington, T.J. Cost-Effective Vehicle and Fuel Technology Choices in a Carbon Constrained World: Insights from Global Energy Systems Modeling. In A Survey of Alternative Vehicles and Their Power Sources; Elsevier: New York, NY, USA, 2010.
[31]
U.S. Advanced Battery Consortium. Available online: http://www.uscar.org/ (accessed on 1 March 2008).
[32]
Takeshita, T.; Yamaji, K. Important roles of Fischer-Tropsch synfuels in the global energy future. Energy Policy 2008, 36, 2791–2802.
[33]
Ford Motor Company, Sustainability 2011/12. A Portfolio Approach. Available online: http://corporate.ford.com/microsites/sustainability-report-2011-12/environment-products-plan-portfolio/ (accessed on 4 April 2013).