全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Coping with Change: A Closer Look at the Underlying Attributes of Change and the Individual Response to Unstable Environments

DOI: 10.3390/su5051764

Keywords: environmental change, adaptation, behavioural plasticity, tolerance, state

Full-Text   Cite this paper   Add to My Lib

Abstract:

Although the study of environmental change has long been of academic interest, the effects of change have become a much more pressing concern in the past few decades due to the often disruptive effect of human expansion and innovation. Researchers from many fields contribute to understanding our footprint on the natural world, problems we cause, and strategies we can employ to protect key species and ecosystems. Unfortunately, environmental change and its consequences are often studied without an awareness of the inherent attributes of the changes. As a result, the relevance of new advances in this field may be easily missed or misunderstood, and existing knowledge is not optimally applied. In this paper, we aim to facilitate the multi-disciplinary comparison of studies on environmental change, by offering a meta-level perspective on the process of change from the point of view of the individual animal. We propose an inclusive definition of change that can be applied across contexts, in which we take our understanding of “change” from an event to an interaction between a physical occurrence and an individual’s state. Furthermore, we discuss key event- and individual-based attributes of change, their relevance in today’s changing world, and how they relate to animals’ available behavioural, physiological and cross-generational responses. We hope that by uncovering the underlying fundamental (or structure) of change, fellow scientists may better share their experience and knowledge gained from years of studying individual species and situations.

References

[1]  Nelson, D.R.; Adger, W.N.; Brown, K. Adaptation to Environmental Change: Contributions of a Resilience Framework. Annu. Rev. Environ. Resour. 2007, 32, 395–419, doi:10.1146/annurev.energy.32.051807.090348.
[2]  Hoffmann, A.A.; Sgrò, C.M. Climate change and evolutionary adaptation. Nature 2011, 470, 479–485, doi:10.1038/nature09670.
[3]  Bakker, M.R.; Jolicoeur, E.; Trichet, P.; Augusto, L.; Plassard, C.; Guinberteau, J.; Loustau, D. Adaptation of fine roots to annual fertilization and irrigation in a 13-year-old Pinus pinaster stand. Tree Physiol. 2009, 29, 229–238.
[4]  Bradshaw, W.E.; Holzapfel, C.M. Genetic response to rapid climate change: it’s seasonal timing that matters. Mol. Ecol. 2008, 17, 157–166, doi:10.1111/j.1365-294X.2007.03509.x.
[5]  Wysujack, K.; Greenberg, L.A.; Bergman, E.; Olsson, I.C. The role of the environment in partial migration: food availability affects the adoption of a migratory tactic in brown trout Salmo trutta. Ecol. Freshw. Fish 2009, 18, 52–59, doi:10.1111/j.1600-0633.2008.00322.x.
[6]  Robson, A.A.; Leaniz, C.G. D.; Wilson, R.P.; Halsey, L.G. Behavioural adaptations of mussels to varying levels of food availability and predation risk. J. Mollus. Stud. 2010, 76, 348–353, doi:10.1093/mollus/eyq025.
[7]  Morris, D.W. Adaptation and habitat selection in the eco-evolutionary process. Proc. R. Soc. B 2011, 278, 2401–2411, doi:10.1098/rspb.2011.0604.
[8]  Hedenstr?m, A. Adaptations to migration in birds: behavioural strategies, morphology and scaling effects. Phil. Trans. R. Soc. B 2008, 363, 287–299, doi:10.1098/rstb.2007.2140.
[9]  Sih, A.; Ferrari, M.C.O.; Harris, D.J. Evolution and behavioural responses to human-induced rapid environmental change. Evol. Appl. 2011, 4, 367–387, doi:10.1111/j.1752-4571.2010.00166.x.
[10]  Bell, G.; Collins, S. Adaptation, extinction and global change. Evol. Appl. 2008, 1, 3–16, doi:10.1111/j.1752-4571.2007.00011.x.
[11]  Vitousek, P.M. Human Domination of Earth’s Ecosystems. Science 1997, 277, 494–499, doi:10.1126/science.277.5325.494.
[12]  Meyers, L.A.; Bull, J.J. Fighting change with change: adaptive variation in an uncertain world. Trends Ecol. Evol. 2002, 17, 551–557, doi:10.1016/S0169-5347(02)02633-2.
[13]  Hendry, A.P.; Farrugia, T.J.; Kinnison, M.T. Human influences on rates of phenotypic change in wild animal populations. Mol. Ecol. 2008, 17, 20–29, doi:10.1111/j.1365-294X.2007.03428.x.
[14]  Tuomainen, U.; Candolin, U. Behavioural responses to human-induced environmental change. Biol. Rev. 2011, 86, 640–657, doi:10.1111/j.1469-185X.2010.00164.x.
[15]  Raubenheimer, D.; Simpson, S.J.; Tait, A.H. Match and mismatch: conservation physiology, nutritional ecology and the timescales of biological adaptation. Phil. Trans. R. Soc. B 2012, 367, 1628–1646, doi:10.1098/rstb.2012.0007.
[16]  O’Brien, K.L.; Eriksen, S.; Schjolden, A.; Nygaard, L. What’s in a word? Conflicting interpretations of vulnerability in climate change research. Available online: http://dspace.cigilibrary.org/jspui/handle/123456789/7304/ (accessed on 20November 2012).
[17]  Ionescu, C.; Klein, R.J. T.; Hinkel, J.; Kumar, K.S.K.; Klein, R. Towards a Formal Framework of Vulnerability to Climate Change. Environ. Model. Assess. 2009, 14, 1–16, doi:10.1007/s10666-008-9179-x.
[18]  Turner, B.L., II; Kasperson, R.E.; Meyer, W.B.; Dow, K.M.; Golding, D.; Kasperson, J.X.; Mitchell, R.C.; Ratick, S.J. Two types of global environmental change: Definitional and spatial-scale issues in their human dimensions. Global Environmen. Change 1990, 1, 14–22, doi:10.1016/0959-3780(90)90004-S.
[19]  Gardner, A.; Grafen, A. Capturing the superorganism: A formal theory of group adaptation. J. Evol. Biol. 2009, 22, 659–671, doi:10.1111/j.1420-9101.2008.01681.x.
[20]  Hamilton, W.D. The genetical evolution of social behaviour. I. J. Theor. Biol. 1964, 7, 1–16, doi:10.1016/0022-5193(64)90038-4.
[21]  Paenke, I.; Jin, Y.; Branke, J. Balancing Population- and Individual-Level Adaptation in Changing Environments. Adapt. Behav. 2009, 17, 153–174, doi:10.1177/1059712309103566.
[22]  Reed, T.E.; Waples, R.S.; Schindler, D.E.; Hard, J.J.; Kinnison, M.T. Phenotypic plasticity and population viability: the importance of environmental predictability. Proc. R. Soc. B 2010, 277, 3391–3400, doi:10.1098/rspb.2010.0771.
[23]  Valdesalici, S.; Cellerino, A. Extremely short lifespan in the annual fish Nothobranchius furzeri. Proc. R. Soc. B 2003, 270, S189–S191, doi:10.1098/rsbl.2003.0048.
[24]  Bagne, K.E.; Purcell, K.L. Short-term responses of birds to prescribed fire in fire-suppressed forests of California. J. Wildlife Manage. 2011, 75, 1051–1060, doi:10.1002/jwmg.128.
[25]  Brumm, H. Animal Communication: City Birds Have Changed Their Tune. Curr. Biol. 2006, 16, R1003–R1004, doi:10.1016/j.cub.2006.10.043.
[26]  Both, C.; Bouwhuis, S.; Lessells, C.M.; Visser, M.E. Climate change and population declines in a long-distance migratory bird. Nature 2006, 441, 81–83.
[27]  Nicholls, R.J.; Cazenave, A. Sea-Level Rise and Its Impact on Coastal Zones. Science 2010, 328, 1517–1520, doi:10.1126/science.1185782.
[28]  Hecky, R.E.; Mugidde, R.; Ramlal, P.S.; Talbot, M.R.; Kling, G.W. Multiple stressors cause rapid ecosystem change in Lake Victoria. Freshwater Biol. 2010, 55, 19–42, doi:10.1111/j.1365-2427.2009.02374.x.
[29]  Bell, G.; Gonzalez, A. Evolutionary rescue can prevent extinction following environmental change. Ecol. Lett. 2009, 12, 942–948, doi:10.1111/j.1461-0248.2009.01350.x.
[30]  Warner, K.; Hamza, M.; Oliver-Smith, A.; Renaud, F.; Julca, A. Climate change, environmental degradation and migration. Nat. Hazards 2010, 55, 689–715, doi:10.1007/s11069-009-9419-7.
[31]  Knutson, T.R.; McBride, J.L.; Chan, J.; Emanuel, K.; Holland, G.; Landsea, C.; Held, I.; Kossin, J.P.; Srivastava, A.K.; Sugi, M. Tropical cyclones and climate change. Nat. Geosci. 2010, 3, 157–163, doi:10.1038/ngeo779.
[32]  Calsbeek, R. Experimental evidence that competition and habitat use shape the individual fitness surface. Journal of Evolutionary Biology 2009, 22, 97–108, doi:10.1111/j.1420-9101.2008.01625.x.
[33]  Both, C.; Van Asch, M.; Bijlsma, R.G.; van den Burg, A.B.; Visser, M.E. Climate change and unequal phenological changes across four trophic levels: constraints or adaptations? J. Anim. Ecol. 2009, 78, 73–83, doi:10.1111/j.1365-2656.2008.01458.x.
[34]  Dingemanse, N.J.; Wright, J.; Kazem, A.J. N.; Thomas, D.K.; Hickling, R.; Dawnay, N. Behavioural syndromes differ predictably between 12 populations of three-spined stickleback. J. Anim. Ecol. 2007, 76, 1128–1138, doi:10.1111/j.1365-2656.2007.01284.x.
[35]  Rothwell, P.E.; Kourrich, S.; Thomas, M.J. Environmental novelty causes stress-like adaptations at nucleus accumbens synapses: Implications for studying addiction-related plasticity. Neuropharmacology 2011, 61, 1152–1159, doi:10.1016/j.neuropharm.2011.01.038.
[36]  Proppe, D.S.; Sturdy, C.B.; St. Clair, C.C. Flexibility in Animal Signals Facilitates Adaptation to Rapidly Changing Environments. PLoS One 2011, 6, e25413, doi:10.1371/journal.pone.0025413.
[37]  Adger, W.N.; Eakin, H.; Winkels, A. Nested and teleconnected vulnerabilities to environmental change. Front. Ecol. Environ. 2009, 7, 150–157, doi:10.1890/070148.
[38]  Bell, A.M.; Dingemanse, N.J.; Hankison, S.J.; Langenhof, M.B.W.; Rollins, K. Early exposure to nonlethal predation risk by size-selective predators increases somatic growth and decreases size at adulthood in threespined sticklebacks. J. Evol. Biol. 2011, 24, 943–953, doi:10.1111/j.1420-9101.2011.02247.x.
[39]  Fuller, A.; Dawson, T.; Helmuth, B.; Hetem, R.S.; Mitchell, D.; Maloney, S.K. Physiological Mechanisms in Coping with Climate Change. Physiol. Biochem. Zool. 2010, 83, 713–720, doi:10.1086/652242.
[40]  Lürling, M.; Scheffer, M. Info-disruption: pollution and the transfer of chemical information between organisms. Trends Ecol. Evol. 2007, 22, 374–379, doi:10.1016/j.tree.2007.04.002.
[41]  Swaddle, J.P.; Page, L.C. High levels of environmental noise erode pair preferences in zebra finches: implications for noise pollution. Anim. Behav. 2007, 74, 363–368, doi:10.1016/j.anbehav.2007.01.004.
[42]  Rabin, L.A.; McCowan, B.; Hooper, S.L.; Owings, D.H. Anthropogenic Noise and its Effect on Animal Communication: An Interface Between Comparative Psychology and Conservation Biology. Int. J. Comp. Psych. 2003, 16, 172–192.
[43]  Waxman, D.; Peck, J.R. Sex and Adaptation in a Changing Environment. Genetics 1999, 153, 1041–1053.
[44]  Paglianti, A.; Ceccolini, F.; Berti, R. Fright reaction in light and dark: How visual information availability modulates the response to chemical alarm cues. Ethol. Ecol. Evol. 2010, 22, 63–71, doi:10.1080/03949370903516016.
[45]  Raby, C.S.; Clayton, N.S. Prospective cognition in animals. Behav. Proc. 2009, 314–324, doi:10.1016/j.beproc.2008.12.005.
[46]  Balbontín, J.; M?ller, A.P.; Hermosell, I.G.; Marzal, A.; Reviriego, M.; de Lope, F. Individual responses in spring arrival date to ecological conditions during winter and migration in a migratory bird. J. Anim. Ecol. 2009, 78, 981–989, doi:10.1111/j.1365-2656.2009.01573.x.
[47]  Leimar, O.; Hammerstein, P.; van Dooren, T.J. M. A New Perspective on Developmental Plasticity and the Principles of Adaptive Morph Determination. Am. Nat.t 2006, 167, 367–376.
[48]  Lof, M.E.; Reed, T.E.; McNamara, J.M.; Visser, M.E. Timing in a fluctuating environment: environmental variability and asymmetric fitness curves can lead to adaptively mismatched avian reproduction. Proc. R. Soc. B 2012, 279, 3161–3169, doi:10.1098/rspb.2012.0431.
[49]  Gottlieb, D.H.; Coleman, K.; McCowan, B. The effects of predictability in daily husbandry routines on captive rhesus macaques (Macaca mulatta). Appl. Anim. Behav. Sci. 2013, 143, 117–127, doi:10.1016/j.applanim.2012.10.010.
[50]  Janssena, M.; Ostromb, E. Resilience, vulnerability, and adaptation: A cross-cutting theme of the International Human Dimensions Programme on Global Environmental Change. Global Environmen. Change 2009, 16, 237–239, doi:10.1016/j.gloenvcha.2006.04.003.
[51]  Preston, B.L.; Yuen, E.J.; Westaway, R.M. Putting vulnerability to climate change on the map: a review of approaches, benefits, and risks. Sustain. Sci. 2011, 6, 177–202, doi:10.1007/s11625-011-0129-1.
[52]  Chevin, L.-M.; Lande, R.; Mace, G.M. Adaptation, Plasticity, and Extinction in a Changing Environment: Towards a Predictive Theory. PLoS Biol. 2010, 8, e1000357, doi:10.1371/journal.pbio.1000357.
[53]  Richter, K.; Haslbeck, M.; Buchner, J. The Heat Shock Response: Life on the Verge of Death. Mol. Cell 2010, 40, 253–266, doi:10.1016/j.molcel.2010.10.006.
[54]  Warren, M.S.; Hill, J.K.; Thomas, J.A.; Asher, J.; Fox, R.; Huntley, B.; Roy, D.B.; Telfer, M.G.; Jeffcoate, S.; Harding, P.; et al. Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature 2001, 414, 65–69.
[55]  Moran, D.T.; Dias, G.M.; Marshall, D.J. Associated costs and benefits of a defended phenotype across multiple environments. Funct. Ecol. 2010, 24, 1299–1305, doi:10.1111/j.1365-2435.2010.01741.x.
[56]  Ghalambor, C.K.; McKay, J.K.; Carroll, S.P.; Reznick, D.N. Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct. Ecol. 2007, 21, 394–407, doi:10.1111/j.1365-2435.2007.01283.x.
[57]  Pulido, F. Phenotypic changes in spring arrival: Evolution, phenotypic plasticity, effects of weather and condition. Clim. Res. 2007, 35, 5–23, doi:10.3354/cr00711.
[58]  Brook, B.W.; Sodhi, N.S.; Bradshaw, C.J.A. Synergies among extinction drivers under global change. Trends Ecol. Evol. 2008, 23, 453–460, doi:10.1016/j.tree.2008.03.011.
[59]  Jenssen, B.M. Endocrine-Disrupting Chemicals and Climate Change: A Worst-Case Combination for Arctic Marine Mammals and Seabirds? Environ. Health Persp.s 2005, 114, 76–80, doi:10.1289/ehp.8057.
[60]  Feil, R.; Fraga, M.F. Epigenetics and the environment: emerging patterns and implications. Nat. Rev. Genet. 2012, 13, 97–109.
[61]  Eriksen, S.; Aldunce, P.; Bahinipati, C.S.; Martins, R.D.; Molefe, J.I.; Nhemachena, C.; O’Brien, K.; Olorunfemi, F.; Park, J.; Sygna, L.; Ulsrud, K. When not every response to climate change is a good one: Identifying principles for sustainable adaptation. Clim. Develop. 2011, 3, 7–20, doi:10.3763/cdev.2010.0060.
[62]  Lande, R. Adaptation to an extraordinary environment by evolution of phenotypic plasticity and genetic assimilation. J. Evolution. Biol. 2009, 22, 1435–1446, doi:10.1111/j.1420-9101.2009.01754.x.
[63]  Hansen, M.M.; Olivieri, I.; Waller, D.M.; Nielsen, E.E.; Group, T.G.W. Monitoring adaptive genetic responses to environmental change. Mol. Ecol. 2012, 21, 1311–1329, doi:10.1111/j.1365-294X.2011.05463.x.
[64]  Wcislo, W.T. Behavioral Environments and Evolutionary Change. Annu. Rev. Ecol. Syst. 1989, 20, 137–169.
[65]  Davis, M.B. Range Shifts and Adaptive Responses to Quaternary Climate Change. Science 2001, 292, 673–679, doi:10.1126/science.292.5517.673.
[66]  Gienapp, P.; Teplitsky, C.; Alho, J.S.; Mills, J.A.; Meril?, J. Climate change and evolution: disentangling environmental and genetic responses. Mol. Ecol. 2008, 17, 167–178, doi:10.1111/j.1365-294X.2007.03413.x.
[67]  Dingemanse, N.J.; Kazem, A.J.N.; Réale, D.; Wright, J. Behavioural reaction norms: animal personality meets individual plasticity. Trends Ecol. Evol. 2010, 25, 81–89, doi:10.1016/j.tree.2009.07.013.
[68]  Bauer, S.; Klaassen, M. Mechanistic models of animal migration behaviour—their diversity, structure and use. J. Anim. Ecol. 2013. in press.
[69]  Dingle, H. Rowley Review: Bird migration in the southern hemisphere: A review comparing continents. Emu 2008, 108, 341–359, doi:10.1071/MU08010.
[70]  Ewen, J.G.; Armstrong, D.P.; Parker, K.A.; Seddon, P.J. Reintroduction Biology: Integrating Science and Management; John Wiley & Sons: West-Sussex, UK, 2011.
[71]  Serrano, D.; Tella, J.L. Lifetime fitness correlates of natal dispersal distance in a colonial bird. J. Anim. Ecol. 2012, 81, 97–107, doi:10.1111/j.1365-2656.2011.01878.x.
[72]  Bilton, D.T.; Paula, J.; Bishop, J.D.D. Dispersal, Genetic Differentiation and Speciation in Estuarine Organisms. Estuar. Coast. Shelf S. 2002, 55, 937–952, doi:10.1006/ecss.2002.1037.
[73]  Switzer, P.V. Factors affecting site fidelity in a territorial animal, Perithemis tenera. Anim. Behav. 1997, 53, 865–877.
[74]  Bowler, D.E.; Benton, T.G. Causes and consequences of animal dispersal strategies: Relating individual behaviour to spatial dynamics. Biol. Rev. 2005, 80, 205–225, doi:10.1017/S1464793104006645.
[75]  Crooks, K.R.; Burdett, C.L.; Theobald, D.M.; Rondinini, C.; Boitani, L. Global patterns of fragmentation and connectivity of mammalian carnivore habitat. Phil. Trans. R. Soc. B 2011, 366, 2642–2651, doi:10.1098/rstb.2011.0120.
[76]  Komdeur, J. Conserving the seychelles warbler Acrocephalus sechellensis by translocation from Cousin Island to the islands of Aride and Cousine. Biol. Conserv. 1994, 67, 143–152, doi:10.1016/0006-3207(94)90360-3.
[77]  Vercken, E.; Massot, M.; Sinervo, B.; Clobert, J. Colour variation and alternative reproductive strategies in females of the common lizard Lacerta vivipara. J. Evolution. Biol. 2007, 20, 221–232.
[78]  Oh, K.P.; Badyaev, A.V. Structure of Social Networks in a Passerine Bird: Consequences for Sexual Selection and the Evolution of Mating Strategies. Am. Nat. 2010, 176, E80–E89.
[79]  Bonte, D.; de la Pe?a, E. Evolution of body condition-dependent dispersal in metapopulations. J. Evolution. Biol. 2009, 22, 1242–1251, doi:10.1111/j.1420-9101.2009.01737.x.
[80]  Mery, F.; Burns, J.G. Behavioural plasticity: an interaction between evolution and experience. Evol. Ecol. 2010, 24, 571–583, doi:10.1007/s10682-009-9336-y.
[81]  Piersma, T.; Drent, J. Phenotypic flexibility and the evolution of organismal design. Trends Ecol. Evol. 2003, 18, 228–233, doi:10.1016/S0169-5347(03)00036-3.
[82]  Dingemanse, N.J.; Bouwman, K.M.; Van de Pol, M.; Van Overveld, T.; Patrick, S.C.; Matthysen, E.; Quinn, J.L. Variation in personality and behavioural plasticity across four populations of the great tit Parus major. J. Anim. Ecol. 2012, 81, 116–126, doi:10.1111/j.1365-2656.2011.01877.x.
[83]  Wolf, M.; Doorn, G.S., van; Weissing, F. Evolutionary emergence of responsive and unresponsive personalities. Proc. Nutl. Acad. Sci. USA 2008, 105, 15825–15830, doi:10.1073/pnas.0805473105.
[84]  Gross, K.; Pasinelli, G.; Kunc, H.P. Behavioral Plasticity Allows Short-Term Adjustment to a Novel Environment. Am. Nat.t 2010, 176, 456–464, doi:10.1086/655428.
[85]  Jones, C.G.; Lawton, J.H.; Shachak, M. Organisms as Ecosystem Engineers. Oikos 1994, 69, 373, doi:10.2307/3545850.
[86]  Casas-Crivillé, A.; Valera, F. The European bee-eater (Merops apiaster) as an ecosystem engineer in arid environments. J. Arid Environ. 2005, 60, 227–238, doi:10.1016/j.jaridenv.2004.03.012.
[87]  Wright, J.P.; Jones, C.G.; Flecker, A.S. An ecosystem engineer, the beaver, increases species richness at the landscape scale. Oecologia 2002, 132, 96–101, doi:10.1007/s00442-002-0929-1.
[88]  Charmantier, A.; Garant, D. Environmental quality and evolutionary potential: lessons from wild populations. Proc. R. Soc. B 2005, 272, 1415–1425, doi:10.1098/rspb.2005.3117.
[89]  Stuart-Fox, D.; Moussalli, A. Camouflage, communication and thermoregulation: lessons from colour changing organisms. Phil. Trans. R. Soc. B 2009, 364, 463–470, doi:10.1098/rstb.2008.0254.
[90]  Reed, W.L.; Clark, M.E. Beyond Maternal Effects in Birds: Responses of the Embryo to the Environment. Integr. Comp. Biol. 2011, 51, 73–80, doi:10.1093/icb/icr032.
[91]  Warkentin, K.M. Plasticity of Hatching in Amphibians: Evolution, Trade-Offs, Cues and Mechanisms. Integr. Comp. Biol. 2011, 51, 111–127, doi:10.1093/icb/icr046.
[92]  Monaghan, P. Early growth conditions, phenotypic development and environmental change. Phil. Trans. R. Soc. B 2008, 363, 1635–1645, doi:10.1098/rstb.2007.0011.
[93]  Beldade, P.; Mateus, A.R.A.; Keller, R.A. Evolution and molecular mechanisms of adaptive developmental plasticity. Mol. Ecol. 2011, 20, 1347–1363, doi:10.1111/j.1365-294X.2011.05016.x.
[94]  Hofmann, G.E.; Todgham, A.E. Living in the Now: Physiological Mechanisms to Tolerate a Rapidly Changing Environment. Annu. Rev. Physiol. 2010, 72, 127–145, doi:10.1146/annurev-physiol-021909-135900.
[95]  M?ller, A.P.; Szép, T. Rapid evolutionary change in a secondary sexual character linked to climatic change. J. Evolution. Biol. 2005, 18, 481–495.
[96]  Price, T.D.; Qvarnstrom, A.; Irwin, D.E. The role of phenotypic plasticity in driving genetic evolution. P. R.l Soc. B 2003, 270, 1433–1440, doi:10.1098/rspb.2003.2372.
[97]  Richter, S.; Kipfer, T.; Wohlgemuth, T.; Guerrero, C.C.; Ghazoul, J.; Moser, B. Phenotypic plasticity facilitates resistance to climate change in a highly variable environment. Oecologia 2012, 169, 269–279, doi:10.1007/s00442-011-2191-x.
[98]  Mller, A.P.; Biard, C.; Karadas, F.; Rubolini, D.; Saino, N.; Surai, P.F. Maternal effects and changing phenology of bird migration. Clim. Res. 2011, 49, 201–210, doi:10.3354/cr01030.
[99]  Bernardo, J. Maternal Effects in Animal Ecology. Amer. Zool. 1996, 36, 83–105.
[100]  Meylan, S.; Miles, D.B.; Clobert, J. Hormonally mediated maternal effects, individual strategy and global change. Phil. Trans. R. Soc. B 2012, 367, 1647–1664, doi:10.1098/rstb.2012.0020.
[101]  Wells, J.C.K. An evolutionary perspective on the trans-generational basis of obesity. Ann. Hum. Biol. 2011, 38, 400–409, doi:10.3109/03014460.2011.580781.
[102]  Taborsky, B. Mothers Determine Offspring Size in Response to Own Juvenile Growth Conditions. Biol. Lett. 2006, 2, 225–228, doi:10.1098/rsbl.2005.0422.
[103]  R?s?nen, K.; Laurila, A.; Meril?, J. Maternal investment in egg size: Environment- and population-specific effects on offspring performance. Oecologia 2005, 142, 546–553, doi:10.1007/s00442-004-1762-5.
[104]  Mousseau, T.A.; Fox, C.W. The adaptive significance of maternal effects. Trends Ecol. Evol. 1998, 13, 403–407, doi:10.1016/S0169-5347(98)01472-4.
[105]  Crean, A.J.; Marshall, D.J. Coping with environmental uncertainty: Dynamic bet hedging as a maternal effect. Phil. Trans. R. Soc. B 2009, 364, 1087–1096, doi:10.1098/rstb.2008.0237.
[106]  Burgess, S.C.; Marshall, D.J. Temperature-induced maternal effects and environmental predictability. J. Exp. Biol. 2011, 214, 2329–2336, doi:10.1242/jeb.054718.
[107]  Hoyle, R.B.; Ezard, T.H.G. The benefits of maternal effects in novel and in stable environments. J. R. Soc. Interface 2012, 9, 2403–2413, doi:10.1098/rsif.2012.0183.
[108]  Candolin, U.; Salesto, T.; Evers, M. Changed environmental conditions weaken sexual selection in sticklebacks. J. Evolution. Biol. 2007, 20, 233–239, doi:10.1111/j.1420-9101.2006.01207.x.
[109]  Reser, J.P.; Swim, J.K. Adapting to and coping with the threat and impacts of climate change. Am. Psychol. 2011, 66, 277–289, doi:10.1037/a0023412.
[110]  Wingfield, J.C.; Mukai, M. Endocrine disruption in the context of life cycles: Perception and transduction of environmental cues. Gen. Comp. Endocr. 2009, 163, 92–96, doi:10.1016/j.ygcen.2009.04.030.
[111]  Bj?rke, O.; ?stbye, K.; Lampe, H.M.; V?llestad, L.A. Covariation in shape and foraging behaviour in lateral plate morphs in the three-spined stickleback. Ecol. Freshw. Fish 2010, 19, 249–256, doi:10.1111/j.1600-0633.2010.00409.x.
[112]  McKinnon, J.S.; Rundle, H.D. Speciation in nature: The threespine stickleback model systems. Trends Ecol. Evol. 2002, 17, 480–488, doi:10.1016/S0169-5347(02)02579-X.
[113]  Harcourt, J.L.; Biau, S.; Johnstone, R.; Manica, A. Boldness and Information Use in Three-Spined Sticklebacks. Ethology 2010, 116, 440–447, doi:10.1111/j.1439-0310.2010.01757.x.
[114]  Bell, A.M.; Stamps, J.A. Development of behavioural differences between individuals and populations of sticklebacks, Gasterosteus aculeatus. Anim. Behav. 2004, 68, 1339–1348, doi:10.1016/j.anbehav.2004.05.007.
[115]  Svanb?ck, R.; Schluter, D. Niche specialization influences adaptive phenotypic plasticity in the threespine stickleback. Am. Nat. 2012, 180, 50–59, doi:10.1086/666000.
[116]  Heuschele, J.; Mannerla, M.; Gienapp, P.; Candolin, U. Environment-dependent use of mate choice cues in sticklebacks. Behav. Ecol. 2009, 20, 1223–1227, doi:10.1093/beheco/arp123.
[117]  Gardu?o-Paz, M.V.; Couderc, S.; Adams, C.E. Habitat complexity modulates phenotype expression through developmental plasticity in the threespine stickleback. Biol. J. Linn. Soc. 2010, 100, 407–413, doi:10.1111/j.1095-8312.2010.01423.x.
[118]  Baker, J.A.; Foster, S.A. Phenotypic plasticity for life history traits in a stream population of the threespine stickleback, Gasterosteus aculeatus L. Ecol. Freshw Fish 2002, 11, 20–29, doi:10.1034/j.1600-0633.2002.110104.x.
[119]  Day, T.; McPhail, J.D. The effect of behavioural and morphological plasticity on foraging efficiency in the threespine stickleback (Gasterosteus sp.). Oecologia 1996, 108, 380–388.
[120]  Langenhof, M.B.W.; Komdeur, J. Small variations in early-life environment affect adaptive behaviour in response to obstructed foraging conditions for three-spined sticklebacks. 2013. under Review.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133