|
BMC Cancer 2011
Genetic polymorphisms of DNA double strand break gene Ku70 and gastric cancer in TaiwanKeywords: Ku70, Polymorphism, Gastric cancer, Carcinogenesis Abstract: In this hospital-based case-control study, the associations of Ku70 promoter T-991C (rs5751129), promoter G-57C (rs2267437), promoter A-31G (rs132770), and intron 3 (rs132774) polymorphisms with gastric cancer risk in a Taiwanese population were investigated. In total, 136 patients with gastric cancer and 560 age- and gender-matched healthy controls recruited from the China Medical Hospital in Taiwan were genotyped.As for Ku70 promoter T-991C, the ORs after adjusted by age and gender of the people carrying TC and CC genotypes were 2.41 (95% CI = 1.53-3.88) and 3.21 (95% CI = 0.96-9.41) respectively, compared to those carrying TT wild-type genotype. The P for trend was significant (P < 0.0001). In the dominant model (TC plus CC versus TT), the association between Ku70 promoter T-991C polymorphism and the risk for gastric cancer was also significant (adjusted OR = 2.48, 95% CI = 1.74-3.92). When stratified by age and gender, the association was restricted to those at the age of 55 or elder of age (TC vs TT: adjusted OR = 2.52, 95% CI = 1.37-4.68, P = 0.0139) and male (TC vs TT: adjusted OR = 2.58, 95% CI = 1.33-4.47, P = 0.0085). As for the other three polymorphisms, there was no difference between both groups in the distributions of their genotype frequencies.In conclusion, the Ku70 promoter T-991C (rs5751129), but not the Ku70 promoter C-57G (rs2267437), promoter A-31G (rs132770) or intron 3 (rs132774), is associated with gastric cancer susceptibility. This polymorphism may be a novel useful marker for gastric carcinogenesis.Gastric cancer is the fourth most common cancer over the world and affects approximately 900,000 individuals every year [1]. Although the identification of Helicobacter pylori has revolutionized the understanding of its epidemiology and pathogenesis, the initiation etiology and genomic contributing factors of gastric cancer are still largely unknown [2]. Human DNA repair mechanisms protect the genome from various insults caused by endogenous and
|