全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Mature Hybrid Poplar Riparian Buffers along Farm Streams Produce High Yields in Response to Soil Fertility Assessed Using Three Methods

DOI: 10.3390/su5051893

Keywords: agroforestry, afforestation, biomass, wood volume, ion exchange membranes

Full-Text   Cite this paper   Add to My Lib

Abstract:

This study had three main objectives: (1) to evaluate the aboveground biomass and volume yield of three unrelated hybrid poplar clones in 9 year-old riparian buffer strips located on four farms of southern Québec, Canada; (2) to compare yield data at 9 years with previous data (at 6 years); (3) to evaluate how soil fertility, measured using three different soil testing methods (soil nutrient stocks, soil nutrient concentrations, soil nutrient supply rates), is related to yield. Across the four sites, hybrid poplar productivity after 9 years ranged from 116 to 450 m 3ha ?1, for stem wood volume, and from 51 to 193 megagrams per hectare (Mg ha ?1), for woody dry biomass. High volume and woody dry biomass yields (26.3 to 49.9 m 3ha ?1yr -1, and 11.4 to 21.4 Mg ha ?1yr -1) were observed at the three most productive sites. From year 6 to 9, relatively high yield increases (8.9?15.1 m 3ha ?1yr ?1) were observed at all sites, but the productivity gap between the less fertile site and the three other sites was widened. Clone MxB-915311 was the most productive across the four sites, while clone DxN-3570 was the least productive. However, at the most productive site, clone MxB-915311 experienced severe stem and branch breakages. Independently of the soil testing method used, available soil P was always the first soil factor explaining volume yield.

References

[1]  Fortier, J.; Gagnon, D.; Truax, B.; Lambert, F. Biomass and volume yield after 6 years in multiclonal hybrid poplar riparian buffer strips. Biomass Bioenerg. 2010, 34, 1028–1040, doi:10.1016/j.biombioe.2010.02.011.
[2]  Kelly, J.; Kovar, J.; Sokolowsky, R.; Moorman, T. Phosphorus uptake during four years by different vegetative cover types in a riparian buffer. Nutr. Cycl. Agroecosyst. 2007, 78, 239–251, doi:10.1007/s10705-007-9088-4.
[3]  Licht, L.A. Salicaceae family trees in sustainable agroecosystems. For. Chron. 1992, 68, 214–217.
[4]  Schultz, R.C.; Colletti, J.P.; Isenhart, T.M.; Simpkins, W.W.; Mize, C.; Thompson, M. Design and placement of a multi-species riparian buffer strip system. Agrofor. Syst. 1995, 29, 201–226, doi:10.1007/BF00704869.
[5]  Schroeder, W.; Kort, J.; Savoie, P.; Preto, F. Biomass harvest from natural willow rings around prairie wetlands. BioEnergy Res. 2009, 2, 99–105, doi:10.1007/s12155-009-9040-3.
[6]  Christen, B.; Dalgaard, T. Buffers for biomass production in temperate european agriculture: A review and synthesis on function, ecosystem services and implementation. Biomass Bioenerg. 2013. in press.
[7]  Licht, L.A.; Isebrands, J.G. Linking phytoremediated pollutant removal to biomass economic opportunities. Biomass Bioenerg. 2005, 28, 203–218, doi:10.1016/j.biombioe.2004.08.015.
[8]  Rockwood, D.L.; Naidu, C.V.; Carter, D.R.; Rahmani, M.; Spriggs, T.A.; Lin, C.; Alker, G.R.; Isebrands, J.G.; Segrest, S.A. Short-rotation woody crops and phytoremediation: Opportunities for agroforestry? Agrofor. Syst. 2004, 61–62, 51–63, doi:10.1023/B:AGFO.0000028989.72186.e6.
[9]  Boutin, C.; Jobin, B.; Bélanger, L. Importance of riparian habitats to flora conservation in farming landscapes of southern Québec, Canada. Agric. Ecosyst. Environ. 2003, 94, 73–87, doi:10.1016/S0167-8809(02)00014-2.
[10]  Dosskey, M.G.; Vidon, P.; Gurwick, N.P.; Allan, C.J.; Duval, T.P.; Lowrance, R. The role of riparian vegetation in protecting and improving chemical water quality in streams. JAWRA 2010, 46, 261–277.
[11]  Lowrance, R.; Altier, L.S.; Newbold, J.D.; Schnabel, R.R.; Groffman, P.M.; Denver, J.M.; Correll, D.L.; Gilliam, J.W.; Robinson, J.L.; Brinsfield, R.B.; Staver, K.W.; Lucas, W.; Todd, A.H. Water quality functions of riparian forest buffers in Chesapeake Bay watersheds. Environ. Manage. 1997, 21, 687–712, doi:10.1007/s002679900060.
[12]  Jobin, B.; Bélanger, L.; Boutin, C.; Maisonneuve, C. Conservation value of agricultural riparian strips in the boyer river watershed, Québec (Canada). Agric. Ecosyst. Environ. 2004, 103, 413–423, doi:10.1016/j.agee.2003.12.014.
[13]  Décamps, H.; Pinay, G.; Naiman, R.J.; Petts, G.E.; McClain, M.E.; Hillbricht-Ilkowska, A.; Hanley, T.A.; Holmes, R.M.; Quinn, J.; Gilbert, J.; Tabacchi, A.-M.P.; Schiemer, F.; Tabacchi, E.; Zalewski, M. Riparian zone: Where biogeochemistry meets biodiversity in management practice. Pol. J. Ecol. 2004, 52, 3–18.
[14]  Fortier, J.; Gagnon, D.; Truax, B.; Lambert, F. Nutrient accumulation and carbon sequestration in 6 year-old hybrid poplars in multiclonal agricultural riparian buffer strips. Agric. Ecosyst. Environ. 2010, 137, 276–287, doi:10.1016/j.agee.2010.02.013.
[15]  Fortier, J.; Gagnon, D.; Truax, B.; Lambert, F. Understory plant diversity and biomass in hybrid poplar riparian buffer strips in pastures. New For. 2011, 42, 241–265, doi:10.1007/s11056-011-9250-3.
[16]  Schultz, R.C.; Isenhart, T.M.; Simpkins, W.W.; Colletti, J.P. Riparian forest buffers in agroecosystems—lessons learned from the bear creek watershed, central Iowa, USA. Agrofor. Syst. 2004, 61–62, 35–50, doi:10.1023/B:AGFO.0000028988.67721.4d.
[17]  Berges, S.; Schulte Moore, L.; Isenhart, T.; Schultz, R. Bird species diversity in riparian buffers, row crop fields, and grazed pastures within agriculturally dominated watersheds. Agrofor. Syst. 2010, 79, 97–110, doi:10.1007/s10457-009-9270-6.
[18]  Zaimes, G.N.; Schultz, R.C.; Isenhart, T.M. Stream bank erosion adjacent to riparian forest buffers, row-crop fields, and continuously-grazed pastures along bear creek in central Iowa. J. Soil Water Conserv. 2004, 59, 19–27.
[19]  Yemshanov, D.; McKenney, D. Fast-growing poplar plantations as a bioenergy supply source for canada. Biomass Bioenerg. 2008, 32, 185–197, doi:10.1016/j.biombioe.2007.09.010.
[20]  Secchi, S.; Tyndall, J.; Schulte, L.A.; Asbjornsen, H. High crop prices and conservation: Raising the stakes. J. Soil Water Conserv. 2008, 63, 68–73, doi:10.2489/jswc.63.3.68A.
[21]  Turhollow, A. Costs of Producing Biomass from Riparian Buffer Strips; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2000; p. 71.
[22]  Truax, B.; Gagnon, D.; Fortier, J.; Lambert, F. Yield in 8 year-old hybrid poplar plantations on abandoned farmland along climatic and soil fertility gradients. For. Ecol. Manage. 2012, 267, 228–239, doi:10.1016/j.foreco.2011.12.012.
[23]  Tufekcioglu, A.; Raich, J.W.; Isenhart, T.M.; Schultz, R.C. Biomass, carbon and nitrogen dynamics of multi-species riparian buffers within an agricultural watershed in Iowa, USA. Agrofor. Syst. 2003, 57, 187–198, doi:10.1023/A:1024898615284.
[24]  Petrinovic, N.; Gélinas, J.F.; Beaulieu, J. Rentabilité des plantations d’épinette blanche améliorée génétiquement au québec : Le point de vue du propriétaire. For. Chron. 2009, 85, 558–570.
[25]  Johnson, J.D.; Henri, C.J. Riparian forest buffer income opportunities: A hybrid poplar case study. J. Soil Water Conserv. 2005, 60, 159–163.
[26]  Bendtsen, B.A.; Maeglin, R.R.; Deneke, F. Comparison of mechanical and anatomical properties of eastern cottonwood and populus hybrid ne-237. Wood Sci. 1981, 14, 1–14.
[27]  Balatinecz, J.J.; Kretschmann, D.E.; Leclercq, A. Achievements in the utilization of poplar wood -guideposts for the future. For. Chron. 2001, 77, 265–269.
[28]  DeBell, D.S.; Gartner, B.L. Wood density and fiber length in young populus stems: Relation to clone, age, growth rate, and pruning. Wood Fiber Sci. 2002, 34, 529–539.
[29]  Pliura, A.; Zhang, S.Y.; MacKay, J.; Bousquet, J. Genotypic variation in wood density and growth traits of poplar hybrids at four clonal trials. For. Ecol. Manage. 2007, 238, 92–106, doi:10.1016/j.foreco.2006.09.082.
[30]  Qian, P.; Schoenau, J.J.; Huang, W.Z. Use of ion exchange membranes in routine soil testing. Commn. Soil Sci. Plant Anal. 1992, 23, 1791–1804, doi:10.1080/00103629209368704.
[31]  Qian, P.; Schoenau, J.J. Practical applications of ion exchange resins in agricultural and environmental soil research. Can. J. Soil Sci. 2002, 82, 9–21.
[32]  Conseil des productions végétales du Québec, Méthodes d'analyse des sols, des fumiers et des tissus végétaux(in French). Agdex 533, Québec, 1988.
[33]  Périnet, P.; Gagnon, H.; Morin, S. Liste des Clones Recommandés de Peuplier Hybride parSous-Région écologique au Québec (Mise à Jour Octobre 2010); Direction de la recherche forestière, MRN: Québec, Canada, 2010; p. 1.
[34]  Steel, R.G.D.; Torrie, J.H. Principles and Procedures of Statistics; McGraw-Hill: New York, NY, USA, 1980; p. 633.
[35]  Tran, T.S.; Simard, R.R. Mehlich iii-extractable elements. In Soil Sampling and Methods of Analysis; Carter, M.R., Ed.; Canadian Society of Soil Science, Lewis Publishers: Boca Raton, FL, USA, 1993; pp. 43–49.
[36]  US Environmental Protection Agency. Inductively Coupled Plasma-Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Waste; US EPA: Washington, DC, USA, 1983.
[37]  Westfall, D.G.; Henson, M.A.; Evans, E.P. The effect of soil sample handling between collection and drying on nitrate concentration. Comm. Soil Sci. Plant Anal. 1978, 9, 169–185.
[38]  Throop, H.L.; Archer, S.R. Shrub (Prosopis velutina) encroachment in a semidesert grassland: Spatial–temporal changes in soil organic carbon and nitrogen pools. Glob. Change Biol. 2008, 14, 2420–2431, doi:10.1111/j.1365-2486.2008.01650.x.
[39]  Throop, H.L.; Archer, S.R.; Monger, H.C.; Waltman, S. When bulk density methods matter: Implications for estimating soil organic carbon pools in rocky soils. J. Arid Environ. 2012, 77, 66–71, doi:10.1016/j.jaridenv.2011.08.020.
[40]  West, P. Tree and Forest Measurement; Springer-Verglag: Berlin Heidelberg, Germany, 2009; p. 190.
[41]  Zabek, L.M.; Prescott, C.E. Biomass equations and carbon content of aboveground leafless biomass of hybrid poplar in coastal British Columbia. For. Ecol. Manage. 2006, 223, 291–302, doi:10.1016/j.foreco.2005.11.009.
[42]  Jose, S.; Bardhan, S. Agroforestry for biomass production and carbon sequestration: An overview. Agrofor. Syst. 2012, 86, 105–111, doi:10.1007/s10457-012-9573-x.
[43]  Brown, S. Measuring carbon in forests: Current status and future challenges. Environ. Poll. 2002, 116, 363–372, doi:10.1016/S0269-7491(01)00212-3.
[44]  Perron, J.-Y. Inventaire forestier(in French). In Manuel de Foresterie; Ordre des ingénieurs forestiers du Québec, Ed.; Les Presses de l’Université: Ste-Foy, Canada, 1996; pp. 390–473.
[45]  Bergante, S.; Facciotto, G.; Minotta, G. Identification of the main site factors and management intensity affecting the establishment of short-rotation-coppices (src) in northern Italy through stepwise regression analysis. Central Eur. J. Biol. 2010, 5, 522–530, doi:10.2478/s11535-010-0028-y.
[46]  Tabbush, P.; Beaton, A. Hybrid poplars: Present status and potential in Britain. Forestry. 1998, 71, 355–364, doi:10.1093/forestry/71.4.355.
[47]  Gotelli, N.J.; Ellison, A.M. A Primer of Ecological Statistics; Sinauer Associated, Inc.: Sunderland, MA, USA, 2004; p. 510.
[48]  Fortier, J.; Truax, B.; Gagnon, D.; Lambert, F. Hybrid poplar yields in Québec: Implications for a sustainable forest zoning management system. For. Chron. 2012, 88, 391–407.
[49]  Dancause, A. Le Reboisement au Québec; Les Publications du Québec: Québec, Canada, 2008; p. 177.
[50]  Cossalter, C.; Pye-Smith, C. Fast-Wood Forestry; Centre for International Forestry Research (CIFOR): Jakarta, Indonesia, 2003; p. 59.
[51]  Dickmann, D.I. Silviculture and biology of short-rotation woody crops in temperate regions: Then and now. Biomass Bioenerg. 2006, 30, 696–705, doi:10.1016/j.biombioe.2005.02.008.
[52]  Dickmann, D.I.; Kuzovkina, Y.A. Poplars and willows of the world, with emphasis on silviculturally important species; FAO: Rome, Italy, 2008. FAO forest management division working paper ipc/9-2.2008; p. 129.
[53]  Abbe, T.B.; Montgomery, D.R. Large woody debris jams, channel hydraulics and habitat formation in large rivers. Reg. Rivers Res. Manage. 1996, 12, 201–221, doi:10.1002/(SICI)1099-1646(199603)12:2/3<201::AID-RRR390>3.0.CO;2-A.
[54]  Riffell, S.; Verschuyl, J.; Miller, D.; Wigley, T.B. Biofuel harvests, coarse woody debris, and biodiversity - a meta-analysis. For. Ecol. Manage. 2011, 261, 878–887, doi:10.1016/j.foreco.2010.12.021.
[55]  Beschta, R.L.; Kauffman, J.B. Restoration of riparian systems—taking a broader view. In Riparian Ecology and Management in Multi-Land Use Watersheds; Wigington, P.J., Jr., Beschta, R.L., Eds.; American Water Ressource Association: Middleburg, VA, USA, 2000; pp. 323–328.
[56]  Yu, Q.; Zhang, S.Y.; Pliura, A.; Mackay, J.; Bousquet, J.; Périnet, P. Variation in mechanical properties of selected young poplar hybrid crosses. For. Sci. 2008, 54, 255–259.
[57]  Fortier, J.; Truax, B.; Lambert, F.; Gagnon, D.; Chevrier, N. Clone-specific response in leaf nitrate reductase activity among unrelated hybrid poplars in relation to soil nitrate availability. Int. J. For. Res. 2012, 2012, 1–10.
[58]  Qian, P.; Schoenau, J.J.; Greer, K.J.; Liuz, Z. Assessing plant-available potassium in soil using cation exchange membrane burial. Can. J. Soil Sci. 1996, 76, 191–194.
[59]  Andraski, B.J. Balloon and core sampling for determining bulk density of alluvial desert soil. Soil Sci. Soc. Am. J. 1991, 55, 1188–1190.
[60]  Vincent, K.R.; Chadwick, O.A. Synthesizing bulk density for soils with abundant rock fragments. Soil Sci. Soc. Am. J. 1994, 58, 455–464.
[61]  Hefting, M.; Clément, J.C.; Dowrick, D.; Cosandey, A.C.; Bernal, S.; Cimpian, C.; Tatur, A.; Burt, T.P.; Pinay, G. Water table elevation controls on soil nitrogen cycling in riparian wetlands along a european climatic gradient. Biogeochemistry 2004, 67, 113–134, doi:10.1023/B:BIOG.0000015320.69868.33.
[62]  Hefting, M.M.; Bobbink, R.; de Caluwe, H. Nitrous oxide emission and denitrification in chronically nitrate-loaded riparian buffer zones. J Environ Qual. 2003, 32, 1194–1203, doi:10.2134/jeq2003.1194.
[63]  Koyama, L.; Kielland, K. Plant physiological responses to hydrologically mediated changes in nitrogen supply on a boreal forest floodplain: A mechanism explaining the discrepancy in nitrogen demand and supply. Plant Soil 2011, 342, 129–139, doi:10.1007/s11104-010-0676-8.
[64]  Schimel, J.P.; Cates, R.G.; Ruess, R. The role of balsam poplar secondary chemicals in controlling soil nutrient dynamics through succession in the Alaskan taiga. Biogeochemistry 1998, 42, 221–234, doi:10.1023/A:1005911118982.
[65]  Vidon, P.; Allan, C.; Burns, D.; Duval, T.P.; Gurwick, N.; Inamdar, S.; Lowrance, R.; Okay, J.; Scott, D.; Sebestyen, S. Hot spots and hot moments in riparian zones: Potential for improved water quality management. JAWRA 2010, 46, 278–298.
[66]  Karp, A.; Shield, I. Bioenergy from plants and the sustainable yield challenge. New Phytol. 2008, 179, 15–32, doi:10.1111/j.1469-8137.2008.02432.x.
[67]  G?ransson, G. Bird fauna of cultivated energy shrub forests at different heights. Biomass Bioenerg. 1994, 6, 49–52, doi:10.1016/0961-9534(94)90084-1.
[68]  Murray, L.D.; Best, L.B. Short-term bird response to harvesting switchgrass for biomass in Iowa. J. Wildlife Manage. 2003, 67, 611–621, doi:10.2307/3802718.
[69]  Roth, A.M.; Sample, D.W.; Ribic, C.A.; Paine, L.; Undersander, D.J.; Bartelt, G.A. Grassland bird response to harvesting switchgrass as a biomass energy crop. Biomass Bioenerg. 2005, 28, 490–498, doi:10.1016/j.biombioe.2004.11.001.
[70]  Bedard-Haughn, A.; Tate, K.W.; van Kessel, C. Quantifying the impact of regular cutting on vegetative buffer efficacy for nitrogen-15 sequestration. J. Environ. Qual. 2005, 34, 1651–1664, doi:10.2134/jeq2005.0033.
[71]  Kort, J.; Collins, M.; Ditsch, D. A review of soil erosion potential associated with biomass crops. Biomass Bioenerg. 1998, 14, 351–359, doi:10.1016/S0961-9534(97)10071-X.
[72]  Abrahamson, L.P.; Robison, D.J.; Volk, T.A.; White, E.H.; Neuhauser, E.F.; Benjamin, W.H.; Peterson, J.M. Sustainability and environmental issues associated with willow bioenergy development in New York (U.S.A.). Biomass Bioenerg. 1998, 15, 17–22, doi:10.1016/S0961-9534(97)10061-7.
[73]  Jenkins, J.C.; Chojnacky, D.C.; Heath, L.S.; Birdsey, R.A. National-scale biomass estimators for United States tree species. For. Sci. 2003, 49, 12–35.
[74]  Tyndall, J.; Schulte, L.; Hall, R. Expanding the US cornbelt biomass portfolio: Forester perceptions of the potential for woody biomass. Small-Scale Forestry 2011, 10, 287–303, doi:10.1007/s11842-010-9149-4.
[75]  Eco Ressources. étude technico-économique de filières de bioproduits industriels à base de produits ou de biomasses agricoles; Rapport d’étape : Phase 1. Présenté au Ministère de l’Agriculture, des Pêcheries et de l’Alimentation du Québec (MAPAQ), 2010; p. 212.
[76]  Spinelli, R.; Nati, C.; Magagnotti, N. Biomass harvesting from buffer strips in Italy: Three options compared. Agrofor. Syst. 2006, 68, 113–121, doi:10.1007/s10457-006-9002-0.
[77]  Bentrup, G. Conservation buffers: Design Guidelines for Buffers, Corridors, and Greenways; Department of Agriculture, Forest Service, Southern Research Station: Asheville, NC, USA, 2008; p. 110.
[78]  Bull, G.Q.; Bazett, M.; Schwab, O.; Nilsson, S.; White, A.; Maginnis, S. Industrial forest plantation subsidies: Impacts and implications. For. Policy Econ. 2006, 9, 13–31, doi:10.1016/j.forpol.2005.01.004.
[79]  Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133