全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Biology  2013 

The Dynamic Arctic Snow Pack: An Unexplored Environment for Microbial Diversity and Activity

DOI: 10.3390/biology2010317

Keywords: Arctic, microbial ecology, biogeochemical cycling, snow

Full-Text   Cite this paper   Add to My Lib

Abstract:

The Arctic environment is undergoing changes due to climate shifts, receiving contaminants from distant sources and experiencing increased human activity. Climate change may alter microbial functioning by increasing growth rates and substrate use due to increased temperature. This may lead to changes of process rates and shifts in the structure of microbial communities. Biodiversity may increase as the Arctic warms and population shifts occur as psychrophilic/psychrotolerant species disappear in favor of more mesophylic ones. In order to predict how ecological processes will evolve as a function of global change, it is essential to identify which populations participate in each process, how they vary physiologically, and how the relative abundance, activity and community structure will change under altered environmental conditions. This review covers aspects of the importance and implication of snowpack in microbial ecology emphasizing the diversity and activity of these critical members of cold zone ecosystems.

References

[1]  Priscu, J.C.; Christner, B.C. Earth’s icy biosphere. In Microbial Diversity and Bioprospecting; Bull, A.T., Ed.; American Society for Microbiology: Washington, DC, USA, 2004; pp. 130–145.
[2]  Miteva, V. Bacteria in snow and glacier ice. In Psychrophiles: From Biodiversity to Biotechnology; Margesin, R.E.A., Ed.; Springer-Verlag: Berlin, Heidelberg, Germay, 2008; pp. 31–47.
[3]  AMAP. Amap Assessment 2009: Human Health in the Arctic. Arctic Monitoring and Assessment Programme; AMAP: Oslo, Norway, 2009.
[4]  Hinkler, J.; Hansen, B.U.; Tamstorf, M.P.; Sigsgaard, C.; Petersen, D. Snow and snow-cover in central northeast greenland. Adv. Ecol. Res. 2008, 40, 175–195, doi:10.1016/S0065-2504(07)00008-6.
[5]  Jones, H.G. The ecology of snow-covered systems: A brief overview of nutrient cycling and life in the cold. Hydrol. Process 1999, 13, 2135–2147, doi:10.1002/(SICI)1099-1085(199910)13:14/15<2135::AID-HYP862>3.0.CO;2-Y.
[6]  Pomeroy, J.W.; Brun, E. Physical properties of snow. In Snow Ecology. An Interdisciplinary Examination of Snow-Covered Ecosystems; Jones, H.G., Pomeroy, J.W., Walker, D.A., Hoham, R.W., Eds.; Cambridge University Press: Cambridge, UK, 2001; pp. 45–126.
[7]  Zhang, T. Influence of the seasonal snow cover on the ground thermal regime: An overview. Rev. Geophys. 2005, 43, RG4002, doi:10.1029/2004RG000157.
[8]  Larsen, K.S.; Grogan, P.; Jonasson, S.; Michelsen, A. Respiration and microbial dynamics in two subarctic ecosystems during winter and spring thaw: Effects of increased snow depth. Arct. Antarct. Alp. Res. 2007, 39, 268–276, doi:10.1657/1523-0430(2007)39[268:RAMDIT]2.0.CO;2.
[9]  Jones, H.G.; Pomeroy, J.W.; Walker, D.A.; Hoham, R.W. Snow Ecolog; Cambridge University Press: Cambridge, UK, 2001; p. 398.
[10]  Libbrecht, K.G. The physics of snow crystals. Rep. Prog. Phys. 2005, 68, 855–895, doi:10.1088/0034-4885/68/4/R03.
[11]  Kuhn, M. The nutrient cycle through snow and ice, a review. Aquat. Sci. 2001, 63, 150–167, doi:10.1007/PL00001348.
[12]  Christner, B.C.; Morris, C.E.; Foreman, C.M.; Cai, R.; Sands, D.C. Ubiquity of biological ice nucleators in snowfall. Science 2008, 319, 1214.
[13]  Jordan, R.E.; Albert, M.R.; Brun, E. Physical processes within snow and their parameterization. In Snow and Climate; Armstrong, R.L., Brun, E., Eds.; Cambridge University Press: Cambridge, UK, 2008; pp. 12–69.
[14]  Colbeck, S.C. The layered character of snow covers. Rev. Geophys. 1991, 29, 81–96, doi:10.1029/90RG02351.
[15]  Daly, G.L.; Wania, F. Simulating the influence of snow on the fate of organic compounds. Environ. Sci. Technol. 2004, 38, 4176–4186, doi:10.1021/es035105r.
[16]  Hodson, A.; Anesio, A.M.; Tranter, M.; Fountain, A.; Osborn, M.; Priscu, J.; Laybourn-Parry, J.; Sattler, B. Glacial ecosystems. Ecol. Monogr. 2008, 78, 41–67, doi:10.1890/07-0187.1.
[17]  Larose, C.; Dommergue, A.; De Angelis, M.; Cossa, D.; Averty, B.; Marusczak, N.; Soumis, N.; Schneider, D.; Ferrari, C. Springtime changes in snow chemistry lead to new insights into mercury methylation in the arctic. Geochimica Et Cosmochimica Acta 2010b, 74, 6263–6275, doi:10.1016/j.gca.2010.08.043.
[18]  Kuhn, M. Micro-meteorological conditions for snow melt. J. Glaciol. 1987, 33, 24–26.
[19]  Colbeck, S.C. The physical aspects of water flow through snow. Adv. Hydrosciences 1978, 11, 165–206.
[20]  Davis, R.E. Links between snowpack physics and snowpack chemistry. In Seasonal snowpacks nato asi series g; Davies, T.D., Martyn, T., Jones, H.G., Eds.; Springer-Verlag: Berlin, Germany, 1991; Volume 28, pp. 115–138.
[21]  Meyer, T.; Wania, F. Organic contaminant amplification during snowmelt. Water Res. 2008, 42, 1847–1865, doi:10.1016/j.watres.2007.12.016.
[22]  Hodson, A. Biogeochemistry of snowmelt in an antarctic glacial ecosystem. Water Resour. Res. 2006, 42, W11406, doi:10.1029/2005WR004311.
[23]  Colbeck, S.C. A simulation of the enrichment of atmospheric pollutants in snow cover runoff. Water Resour. Res. 1981, 17, 1383–1388, doi:10.1029/WR017i005p01383.
[24]  Goto-Azuma, K.; Nakawo, M.; Han, J.; Watanabe, O.; Azuma, N. Melt-induced relocation of ions in glaciers and in a seasonal snowpack. IAHS Publ. 1994, 223, 287–298.
[25]  Johannessen, M.; Henriksen, A. Chemistry of snow melt water: Changes in concentration during melting. Water Resour. Res. 1978, 14, 615–619, doi:10.1029/WR014i004p00615.
[26]  Davies, T.D.; Vincent, C.E.; Brimblecombe, P. Preferential elution of strong acids from a norwegian ice cap. Nature 1982, 300, 161–163, doi:10.1038/300161a0.
[27]  Brimblecombe, P.; Tranter, M.; Tsiouris, S.; Davies, T.D.; Vincent, C.E. The chemical evolution of snow and meltwater. IAHS Publ. 1986, 155, 283–295.
[28]  Johannessen, M.; Dale, T.; Gjessing, E.T.; Henriksen, A.; Wright, R.F. Acid precipitation in norway: The regional distribution of contaminants in snow and the chemical concentration processes during snow melt. IAHS Publ. 1977, 118, 116–120.
[29]  Davis, R.E.; Petersen, C.E.; Bales, R.C. Ion flux through a shallow snowpack: Effects of initial conditions and melt sequences. IAHS Publ. 1995, 228, 115–126.
[30]  Tranter, M.; Brimblecombe, P.; Davies, T.D.; Vincent, C.E.; Abrahams, P.W.; Blackwood, I. A composition of snowfall, snowpack and meltwater in the scottish highlands—Evidence for preferential elution. Atmos. Environ. 1986, 20, 517–525, doi:10.1016/0004-6981(86)90092-2.
[31]  Meyer, T.; Lei, Y.D.; Muradi, I.; Wania, F. Organic contaminant release from melting snow. 2. Influence of snow pack and melt characteristics. Environ. Sci. Technol. 2008, 43, 663–668.
[32]  Eichler, A.; Schwikowski, M.; G?ggeler, H.W. Meltwater induced relocation of chemical species in alpine firn. Tellus 2001, 53B, 192–203.
[33]  Meyer, T.; Lei, Y.D.; Wania, F. Measuring the release of organic contaminants from melting snow under controlled conditions. Environ. Sci. Technol. 2006, 40, 3320–3326, doi:10.1021/es060049q.
[34]  Hodgkins, R.; Tranter, M.; Dowdeswell, J.A. The hydrochemistry of runoff from a ’coldbased’ glacier in the high arctic (scott turnerbreen, svalbard). Hydrol. Process. 1998, 12, 87–103, doi:10.1002/(SICI)1099-1085(199801)12:1<87::AID-HYP565>3.0.CO;2-C.
[35]  Lyons, W.B.; Welch, K.A.; Fountain, A.G.; Dana, G.L.; Vaughn, B.H.; McKnight, D.M. Surface glaciochemistry of taylor valley, southern victoria land, antarctica, and its relation to stream chemistry. Hydrol. Processes 2003, 17, 115–130, doi:10.1002/hyp.1205.
[36]  Christner, B.C.; Mosley-Thompson, E.; Thompson, L.G.; Zagorodnov, V.S.; Sandman, K.; Reeve, J.N. Recovery and identification of viable bacteria immured in glacial ice. Icarus 2000, 144, 479–485, doi:10.1006/icar.1999.6288.
[37]  Christner, B.C.; Mosley-Thompson, E.; Thompson, L.G.; Reeve, J.N. Isolation of bacteria and 16s rdnas from lake vostok accretion ice. Environ. Microbiol. 2001, 3, 570–577, doi:10.1046/j.1462-2920.2001.00226.x.
[38]  Skidmore, M.L.; Foght, J.M.; Sharp, M.J. Microbial life beneath a high arctic glacier. Appl. Environ. Microbiol. 2000, 66, 3214–3220, doi:10.1128/AEM.66.8.3214-3220.2000.
[39]  Brinkmeyer, R.; Knittel, K.; Jurgens, J.; Weyland, H.; Amann, R.; Helmke, E. Diversity and structure of bacterial communities in arctic versus antarctic pack ice. Appl. Environ. Microbiol. 2003, 69, 6610–6619, doi:10.1128/AEM.69.11.6610-6619.2003.
[40]  Poulain, A.J.; Ni Chadhain, S.M.; Ariya, P.A.; Amyot, M.; Garcia, E.; Campbell, P.G.C.; Zylstra, G.J.; Barkay, T. Potential for mercury reduction by microbes in the high arctic. Appl. Environ. Microbiol. 2007, 73, 2230–2238.
[41]  Amato, P.; Hennebelle, R.; Magand, O.; Sancelme, M.; Delort, A.M.; Barbante, C.; Boutron, C.; Ferrari, C. Bacterial characterization of the snow cover at spitzberg, svalbard. FEMS Microbiol. Ecol. 2007, 59, 255–264.
[42]  Larose, C.; Berger, S.; Ferrari, C.; Navarro, E.; Dommergue, A.; Schneider, D.; Vogel, T.M. Microbial sequences retrieved from environmental samples from seasonal arctic snow and meltwater from svalbard, norway. Extremophiles 2010, 14, 205–212, doi:10.1007/s00792-009-0299-2.
[43]  Sattler, B.; Puxbaum, H.; Psenner, R. Bacterial growth in super cooled cloud droplets. Geophys. Res. Lett. 2001, 28, 239–242, doi:10.1029/2000GL011684.
[44]  Yergeau, E.; Newsham, K.K.; Pearce, D.A.; Kowalchuk, G.A. Patterns of bacterial diversity across a range of antarctic terrestrial habitats. Environ. Microbiol. 2007, 9, 2670–2682, doi:10.1111/j.1462-2920.2007.01379.x.
[45]  Vincent, W.F. Evolutionary origins of antarctic microbiota: Invasion, selection and endemism. Antarct. Sci. 2000, 12, 374–385.
[46]  Harding, T.; Jungblut, A.D.; Lovejoy, C.; Vincent, W.F. Microbes in high arctic snow and implications for the cold biosphere. Appl. Environ. Microbiol. 2011, 77, 3234–3243, doi:10.1128/AEM.02611-10.
[47]  Cowan, D.A.; Tow, L.A. Endangered antacrctic environments. Annu. Rev. Microbiol. 2004, 58, 649–690, doi:10.1146/annurev.micro.57.030502.090811.
[48]  Liu, Y.; Yao, T.; Jiao, N.; Kang, S.; Zeng, Y.; Huang, S. Microbial community structure in moraine lakes and glacial meltwaters, mount everest. FEMS Microbiol. Lett. 2006, 265, 98–105, doi:10.1111/j.1574-6968.2006.00477.x.
[49]  Liu, Y.; Yao, T.; Jiao, N.; Kang, S.; Xu, B.; Zeng, Y.; Huang, S.; Liu, X. Bacterial diversity in the snow over tibetan plateau glaciers. Extremophiles 2009, 13, 89–99, doi:10.1007/s00792-008-0200-8.
[50]  Christner, B.C. Incorporation of DNA and protein precursors into macromolecules by bacteria at ?15 degrees c. Appl. Environ. Microbiol. 2002, 68, 6435–6438, doi:10.1128/AEM.68.12.6435-6438.2002.
[51]  Junge, K.; Eicken, H.; Jody, W. Bacterial activity at ?2 to ?20 °C in arctic wintertime sea ice. Appl. Environ. Microbiol. 2004, 70, 550–557, doi:10.1128/AEM.70.1.550-557.2004.
[52]  Price, P.B.; Sowers, T. Temperature dependence of metabolic rates for microbial growth, survival and maintenance. Proc. Natl. Acad. Sci. USA 2004, 101, 4631–4636, doi:10.1073/pnas.0400522101.
[53]  Bachy, C.; Lopez-Garcia, P.; Vereshchaka, A.; Moreira, D. Diversity and vertical distribution of microbial eukaryotes in the snow, sea ice and seawater near the north pole at the end of the polar night. Front. Microbiol. 2011, 2, 106.
[54]  Komárek, J.; Nedbalová, L. Green cryosestic algae. In Algae and Cyanobacteria in Extreme Environments; Seckbach, J., Ed.; Springer: Amsterdam, Netherlands, 2007; Volume 11, pp. 321–342.
[55]  Hoham, R.W. Optimal temperatures and temperature ranges for growth of snow algae. Arct. Alp. Res. 1975, 7, 13–24, doi:10.2307/1550094.
[56]  Hoham, R.W.; Duval, B. Microbial ecology of snow and freshwater ice with emphasis on snow algae. In Snow Ecology: An Interdisciplinary Examination of Snow-covered; Jones, H.G., Pomeroy, J.W., Walker, D.A., Hoham, R.W., Eds.; Cambridge University Press: Cambridge, UK, 2001; pp. 168–228.
[57]  Stibal, M.; Elster, J.; Sabacka, M.; Kastovska, K. Seasonal and diel changes in photosynthetic activity of the snow alga chlamydomonas nivalis (chlorophyceae) from svalbard determined by pulse amplitude modulation fluorometry. FEMS Microbiol. Ecol. 2007, 59, 265–273.
[58]  Carpenter, E.J.; Lin, S.; Capone, D.G. Bacterial activity in south pole snow. Appl. Environ. Microbiol. 2000, 66, 4514–4517, doi:10.1128/AEM.66.10.4514-4517.2000.
[59]  Segawa, T.; Miyamoto, K.; Ushida, K.; Agata, K.; Okada, N.; Kohshima, S. Seasonal change in bacterial flora and biomass in mountain snow from the tateyama mountains, japan, analyzed by 16s rrna gene sequencing and real-time pcr. Appl. Environ. Microbiol. 2005, 71, 123–130, doi:10.1128/AEM.71.1.123-130.2005.
[60]  Mueller, D.R.; Vincent, W.F.; Bonilla, S.; Laurion, I. Extremotrophs, extremophiles and broadband pigmentation strategies in a high arctic ice shelf ecosystem. FEMS Microbiol. Ecol. 2005, 53, 73–87.
[61]  Qiu, Y.; Vishnivetskaya, T.A.; Lubman, D.M. Proteomic insights: Cryoadaptation of permafrost bacteria. In Permafrost Soils; Springer: New York, NY, USA, 2009; pp. 169–181.
[62]  Thomas, W.H.; Duval, B. Sierra nevada, california, USA, snow algae: Snow albedo changes, algal-bacterial interrelationships, and ultraviolet radiation effects. Arct. Antarct. Alp. Res. 1995, 27, 389–399, doi:10.2307/1552032.
[63]  Yallop, M.L.; Anesio, A.M.; Perkins, R.G.; Cook, J.; Telling, J.; Fagan, D.; Macfarlane, J.; Stibal, M.; Barker, G.; Bellas, C.; et al. Photophysiology and albedo-changing potential of the ice algal community on the surface of the greenland ice sheet. ISME J. 2012, 6, 2302–2313, doi:10.1038/ismej.2012.107.
[64]  Tranter, M.; Sharp, M.J.; Lamb, H.R.; Brown, G.H.; Hubbard, B.P.; Willis, I.C. Geochemical weathering at the bed of haut glacier d’arolla, switzerland—a new model. Hydrol. Processes 2002, 16, 959–993, doi:10.1002/hyp.309.
[65]  Schimel, J.P.; Gulledge, J. Microbial community structure and global trace gases. Global Change Biol. 1998, 4, 745–758, doi:10.1046/j.1365-2486.1998.00195.x.
[66]  Antony, R.; Mahalinganathan, K.; Krishnan, K.P.; Thamban, M. Microbial preference for different size classes of organic carbon: A study from antarctic snow. Environ. Monit. Assess. 2012, 184, 5929–5943, doi:10.1007/s10661-011-2391-1.
[67]  Stibal, M.; Telling, J.; Cook, J.; Mak, K.M.; Hodson, A.; Anesio, A.M. Environmental controls on microbial abundance and activity on the greenland ice sheet: A multivariate analysis approach. Microb. Ecol. 2012, 63, 74–84.
[68]  Barkay, T.; Poulain, A.J. Mercury (micro)biogeochemistry in polar environments. FEMS Microbiol. Ecol. 2007, 59, 232–241, doi:10.1111/j.1574-6941.2006.00246.x.
[69]  Ullrich, S.M.; Tanton, T.W.; Abdrashitova, S.A. Mercury in the aquatic environment: A review of factors affecting methylation. Crit. Rev. Env. Sci. Technol. 2001, 31, 241–293, doi:10.1080/20016491089226.
[70]  Lindberg, S.; Bullock, R.; Ebinghaus, R.; Engstrom, D.; Feng, X.B.; Fitzgerald, W.; Pirrone, N.; Prestbo, E.; Seigneur, C. A synthesis of progress and uncertainties in attributing the sources of mercury in deposition. Ambio 2007, 36, 19–32, doi:10.1579/0044-7447(2007)36[19:ASOPAU]2.0.CO;2.
[71]  Ariya, P.A.; Dastoor, A.P.; Amyot, M.; Schroeder, W.H.; Barrie, L.; Anlauf, K.; Raofie, F.; Ryzhkov, A.; Davignon, D.; Lalonde, J.; et al. The arctic: A sink for mercury. Tellus B. Chem. Phys. Meteorol. 2004, 56, 397–403, doi:10.1111/j.1600-0889.2004.00118.x.
[72]  Douglas, T.A.; Sturm, M.; Simpson, W.R.; Brooks, S.; Lindberg, S.E.; Perovich, D.K. Elevated mercury measured in snow and frost flowers near arctic sea ice leads. Geophys. Res. Lett. 2005, 32, 4.
[73]  Schroeder, W.H.; Anlauf, K.G.; Barrie, L.A.; Lu, J.Y.; Steffen, A.; Schneeberger, D.R.; Berg, T. Arctic springtime depletion of mercury. Nature 1998, 394, 331–332.
[74]  Barrie, L.A.; Bottenheim, J.W.; Schnell, R.C.; Crutzen, P.J.; Rasmussen, R.A. Ozone destruction and photochemical reactions at polar sunrise in the lower arctic atmosphere. Nature 1988, 334, 138–141, doi:10.1038/334138a0.
[75]  Skov, H.; Christensen, J.H.; Goodsite, M.E.; Heidam, N.Z.; Jensen, B.; Wahlin, P.; Geernaert, G. Fate of elemental mercury in the arctic during atmospheric mercury depletion episodes and the load of atmospheric mercury to the arctic. Environ. Sci. Technol. 2004, 38, 2373–2382.
[76]  Lu, J.Y.; Schroeder, W.H.; Barrie, L.A.; Steffen, A.; Welch, H.E.; Martin, K.; Lockhart, L.; Hunt, R.V.; Boila, G.; Richter, A. Magnification of atmospheric mercury deposition to polar regions in springtime: The link to tropospheric ozone depletion chemistry. Geophys. Res. Lett. 2001, 28, 3219–3222, doi:10.1029/2000GL012603.
[77]  Lindberg, S.E.; Brooks, S.; Lin, C.J.; Scott, K.J.; Landis, M.S.; Stevens, R.K.; Goodsite, M.; Richter, A. Dynamic oxidation of gaseous mercury in the arctic troposphere at polar sunrise. Environ. Sci. Technol. 2002, 36, 1245–1256.
[78]  Steffen, A.; Douglas, T.; Amyot, M.; Ariya, P.; Aspmo, K.; Berg, T.; Bottenheim, J.; Brooks, S.; Cobbett, F.; Dastoor, A.; et al. A synthesis of atmospheric mercury depletion event chemistry in the atmosphere and snow. Atmos. Chem. Phys. 2008, 8, 1445–1482, doi:10.5194/acp-8-1445-2008.
[79]  Larose, C.; Dommergue, A.; Marusczak, N.; Coves, J.; Ferrari, C.P.; Schneider, D. Bioavailable mercury cycling in polar snowpacks. Environ. Sci. Technol. 2011, 45, 2150–2156, doi:10.1021/es103016x.
[80]  Barkay, T.; Miller, S.M.; Summers, A.O. Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol. Rev. 2003, 27, 355–384, doi:10.1016/S0168-6445(03)00046-9.
[81]  Constant, P.; Poissant, L.; Villemur, R.; Yumvihoze, E.; Lean, D. Fate of inorganic mercury and methyl mercury within the snow cover in the low arctic tundra on the shore of hudson bay (Québec, Canada). J. Geophys. Res. 2007, 112, D21311, doi:10.1029/2007JD008520.
[82]  Oregaard, G.; Sorensen, S.J. High diversity of bacterial mercuric reductase genes from surface and sub-surface floodplain soil (Oak Ridge, USA). ISME J. 2007, 1, 453–467, doi:10.1038/ismej.2007.56.
[83]  Mindlin, S.; Minakhin, L.; Petrova, M.; Kholodii, G.; Minakhina, S.; Gorlenko, Z.; Nikiforov, V. Present-day mercury resistance transposons are common in bacteria preserved in permafrost grounds since the upper pleistocene. Res. Microbiol. 2005, 156, 994–1004, doi:10.1016/j.resmic.2005.05.011.
[84]  Schelert, J.; Dixit, V.; Hoang, V.; Simbahan, J.; Drozda, M.; Blum, P. Occurrence and characterization of mercury resistance in the hyperthermophilic archaeon sulfolobus solfataricus by use of gene disruption. J. Bacteriol. 2004, 186, 427–437, doi:10.1128/JB.186.2.427-437.2004.
[85]  Moller, A.K.; Barkay, T.; Abu Al-Soud, W.; Sorensen, S.J.; Skov, H.; Kroer, N. Diversity and characterization of mercury-resistant bacteria in snow, freshwater and sea-ice brine from the high arctic. FEMS Microbiol. Ecol. 2011, 75, 390–401, doi:10.1111/j.1574-6941.2010.01016.x.
[86]  Anisimov, O.; Fitzharris, B. Polar regions (arctic and antarctic). In Intergovernmental Panel on Climate Change 2001: Impacts, Adaptation, and Vulnerability; McCarthy, J.J., Canziani, O.F., Leary, N.A., Dokken, D.J., White, K.S., Eds.; Cambridge University Press: Cambridge, UK, 2001; pp. 801–841.
[87]  Macdonald, R.W.; Harner, T.; Fyfe, J. Recent climate change in the arctic and its impact on contaminant pathways and interpretation of temporal trend data. Sci. Total Environ. 2005, 342, 5–86, doi:10.1016/j.scitotenv.2004.12.059.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133