全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Biology  2013 

Ecology of Subglacial Lake Vostok (Antarctica), Based on Metagenomic/Metatranscriptomic Analyses of Accretion Ice

DOI: 10.3390/biology2020629

Keywords: Lake Vostok, subglacial lake, metagenomic, metatranscriptomic, marine, aquatic

Full-Text   Cite this paper   Add to My Lib

Abstract:

Lake Vostok is the largest of the nearly 400 subglacial Antarctic lakes and has been continuously buried by glacial ice for 15 million years. Extreme cold, heat (from possible hydrothermal activity), pressure (from the overriding glacier) and dissolved oxygen (delivered by melting meteoric ice), in addition to limited nutrients and complete darkness, combine to produce one of the most extreme environments on Earth. Metagenomic/metatranscriptomic analyses of ice that accreted over a shallow embayment and over the southern main lake basin indicate the presence of thousands of species of organisms (94% Bacteria, 6% Eukarya, and two Archaea). The predominant bacterial sequences were closest to those from species of Firmicutes, Proteobacteria and Actinobacteria, while the predominant eukaryotic sequences were most similar to those from species of ascomycetous and basidiomycetous Fungi. Based on the sequence data, the lake appears to contain a mixture of autotrophs and heterotrophs capable of performing nitrogen fixation, nitrogen cycling, carbon fixation and nutrient recycling. Sequences closest to those of psychrophiles and thermophiles indicate a cold lake with possible hydrothermal activity. Sequences most similar to those from marine and aquatic species suggest the presence of marine and freshwater regions.

References

[1]  Kapista, A.; Ridley, J.F.; Robin, G.Q.; Siegert, M.J.; Zotikov, I. Large deep freshwater lake beneath the ice of central Antarctica. Nature 1996, 381, 684–686, doi:10.1038/381684a0.
[2]  MacGregor, J.A.; Matsuoka, K.; Studinger, M. Radar detection of accreted ice over Lake Vostok, Antarctica. Earth Planet Sci. Lett. 2009, 282, 222–233, doi:10.1016/j.epsl.2009.03.018.
[3]  Masalov, V.N.; Lukin, V.V.; Shermetiev, A.N.; Popov, S.V. Geophysical investigation of the subglacial Lake Vostok in Eastern Antarctica. Dokl. Earth Sci. 2001, 379A, 734–738.
[4]  Studinger, M.; Karner, G.D.; Bell, R.E.; Levin, V.; Raymond, C.A.; Tikku, A. Geophysical models for the tectonic framework of the Lake Vostok region East Antarctica. Earth Planet Sci. Lett. 2003, 216, 663–677, doi:10.1016/S0012-821X(03)00548-X.
[5]  Wright, A.; Siegert, M.J. The identification and physiographical setting of Antarctic subglacial lakes: An update based on recent discoveries. Geophys. Monogr. Ser. 2011, 192, 9–26, doi:10.1029/2010GM000933.
[6]  Jouzel, J.; Petit, J.R.; Souchez, R.; Barkov, N.I.; Lipenkov, V.Y.; Raynaud, D.; Stievenard, M.; Vassiliev, N.; Verbeke, V.; Vimeux, F. More than 200 meters of lake ice above subglacial Lake Vostok, Antarctica. Science 1999, 286, 2138–2141, doi:10.1126/science.286.5447.2138.
[7]  Bell, R.; Studinger, M.; Tikku, A.; Castello, J.D. Comparative biological analyses of accretion ice from subglacial Lake Vostok. In Life in Ancient Ice; Castello, J.D., Rogers, S.O., Eds.; Princeton University Press: Princeton, NJ, USA, 2005; pp. 251–267.
[8]  Gramling, C. A tiny window opens into Lake Vostok, while a vast continent awaits. Science 2012, 335, 788–789, doi:10.1126/science.335.6070.788.
[9]  Siegert, M.J.; Ellis-Evans, J.C.; Tranter, M.; Mayer, C.; Petit, J.; Salamatin, A.; Priscu, J.C. Physical, chemical and biological processes in Lake Vostok and other Antarctic subglacial lakes. Nature 2001, 414, 603–609.
[10]  Siegert, M.J.; Tranter, M.; Ellis-Evans, J.C.; Priscu, J.C.; Lyons, W.B. The hydrochemistry of Lake Vostok and the potential for life in Antarctic subglacial lakes. Hydrol. Process. 2003, 17, 795–814, doi:10.1002/hyp.1166.
[11]  Bulat, S.A.; Alekhina, I.A.; Lipenkov, V.Y.; Lukin, V.V.; Marie, D.; Petit, J.R. Cell concentrations of microorganisms in glacial and lake ice of the Vostok ice core, East Antarctica. Microbiology 2009, 78, 808–810, doi:10.1134/S0026261709060216.
[12]  Christner, B.C.; Royston-Bishop, G.; Foreman, C.M.; Arnold, B.R.; Tranter, M.; Welch, K.A.; Lyons, W.B.; Tsapin, A.I.; Studinger, M.; Priscu, J.C. Limnological conditions in subglacial Lake Vostok, Antarctica. Limnol. Oceanogr. 2006, 51, 2485–2501, doi:10.4319/lo.2006.51.6.2485.
[13]  Abyzov, S.S.; Poglazova, M.N.; Mitskevich, J.N.; Ivanov, M.V. Common features of microorganisms in ancient layers of the Antarctic ice sheet. In Life in Ancient Ice; Castello, J.D., Rogers, S.O., Eds.; Princeton University Press: Princeton, NJ, USA, 2005; pp. 240–250.
[14]  Christner, B.C.; Mosley-Thompson, E.; Thompson, L.G.; Reeve, J.N. Isolation of bacteria and 16S rDNAs from Lake Vostok accretion ice. Environ. Micrbiol. 2001, 3, 570–577, doi:10.1046/j.1462-2920.2001.00226.x.
[15]  Christner, B.C.; Mosley-Thompson, E.; Thompson, L.G.; Reeve, J.N. Classification of bacteria in polar and nonpolar global ice. In Life in Ancient Ice; Castello, J.D., Rogers, S.O., Eds.; Princeton University Press: Princeton, NJ, USA, 2005; pp. 227–239.
[16]  D’Elia, T.; Veerapaneni, R.; Rogers, S.O. Isolation of microbes from Lake Vostok accretion ice. Appl. Environ. Microbiol. 2008, 74, 4962–4965, doi:10.1128/AEM.02501-07.
[17]  D’Elia, T.; Veerapaneni, R.; Theraisnathan, V.; Rogers, S.O. Isolation of fungi from Lake Vostok accretion ice. Mycologia 2009, 101, 751–763, doi:10.3852/08-184.
[18]  Karl, D.M.; Bird, D.F.; Bj?rkman, K.; Houlihan, T.; Shakelford, R.; Tupas, L. Microorganisms in the accreted ice of Lake Vostok, Antarctica. Science 1999, 286, 2144–2147, doi:10.1126/science.286.5447.2144.
[19]  Priscu, J.C.; Adams, E.E.; Lyons, W.B.; Voytek, M.A.; Mogk, D.W.; Brown, R.L.; McKay, C.P.; Takacs, C.D.; Welch, K.A.; Wolf, C.F. Geomicrobiology of subglacial ice above Lake Vostok, Antarctica. Science 1999, 286, 2141–2144, doi:10.1126/science.286.5447.2141.
[20]  Bulat, S.A.; Alekhina, I.A.; Blot, M.; Petit, J.R.; Waggenbach, D.; Lipenkov, V.Y.; Vasilyeva, L.P.; Wloch, D.M.; Raynaud, D. DNA signature of thermophilic bacteria from the aged accretion ice of Lake Vostok, Antarctica: Implications for searching for life in extreme icy environments. Int. J. Astobiol. 2004, 1, 1–12.
[21]  Lavire, C.; Normand, P.; Alekhina, I.; Bulat, S.; Prieur, D.; Birrien, J.L.; Fournier, P.; H?nni, C.; Petit, J.R. Presence of Hydrogenophilus thermoluteolus DNA in accretion ice in the subglacial Lake Vostok, Antarctica, assessed using rrs, cbb and hox. Environ. Microbiol. 2006, 8, 2106–2114, doi:10.1111/j.1462-2920.2006.01087.x.
[22]  Shtarkman, Y.M.; Ko?er, Z.A.; Edgar, R.; Veerapaneni, R.; D’Elia, T.; Morris, P.F.; Rogers, S.O. Subglacial Lake Vostok (Antarctica) accretion ice contains a diverse set of sequences from aquatic, marine and sediment-inhabiting Bacteria and Eukarya. PLoS One 2012. in revision.
[23]  Ferracciolli, F.; Finn, C.A.; Jordan, T.A.; Bell, R.E.; Anderson, L.M.; Damaske, D. East Antarctic rifting triggers uplift of the Gamburtsev Mountains. Nature 2011, 479, 388–392, doi:10.1038/nature10566.
[24]  Young, D.A.; Wright, A.P.; Roberts, J.L.; Warner, R.C.; Young, N.W.; Greenbaum, J.S.; Schroeder, D.M.; Holt, J.W.; Sugden, D.E.; Blankenship, D.D. A dynamic early East Antarctic Ice Sheet suggested by ice-covered fjord landscapes. Nature 2011, 474, 72–75.
[25]  Ferrer, M.; Werner, J.; Chernikova, T.N.; Barjiela, R.; Fernández, L.; La Cono, V.; Waldmann, J.; Teeling, H.; Golyshina, O.V.; Gl?ckner, F.O. Unveiling microbial life in the new deep-sea hypersaline Lake Thetis. Part II: A metagenomic study. Environ. Microbiol. 2011, 14, 268–281.
[26]  Toth, D.J.; Lerman, A. Stratified lake and ocean brines: Salt movement and time limits of existence. Limnol. Oceanog. 1975, 20, 715–728, doi:10.4319/lo.1975.20.5.0715.
[27]  Bar-Even, A.; Noor, E.; Milo, R. A survey of carbon fixation pathways through a quantitative lens. J. Exp. Bot. 2012, 63, 2325–2342, doi:10.1093/jxb/err417.
[28]  Burgaud, G.; Le Calvez, T.; Arzur, T.D.; Vandenkoornhuyse, P.; Barbier, G. Diversity of culturable marine filamentous fungi from deep-sea hydrothermal vents. Environ. Microbiol. 2009, 11, 1588–1600, doi:10.1111/j.1462-2920.2009.01886.x.
[29]  Bell, E. Life at Extremes: Environments, Organisms and Strategies for Survival; CABI: Cambridge, MA, USA, 2012; p. 576.
[30]  Daniel, M.; Cohen, D.M.; Richard, H.; Rosenblatt, R.H.; Moser, H.G. Biology and description of a bythitid fish from deep-sea thermal vents in the tropical eastern Pacific. Deep Sea Res. 1990, 37, 267–283, doi:10.1016/0198-0149(90)90127-H.
[31]  Gaill, F.; Mann, K.; Wiedemann, H.; Engel, J.; Timpl, R. Structural comparison of cuticle and interstitial collagens from annelids living in shallow sea-water and at deep-sea hydrothermal vents. J. Mol. Biol. 1995, 246, 284–294, doi:10.1006/jmbi.1994.0084.
[32]  Shank, T.M.; Black, M.B.; Halanych, K.M.; Lutz, R.A.; Vrijenhoek, R.C. Miocene radiation of deep-sea hydeothermal vent shrimp (Caridea: Bresiliidae): Evidence from mitochondrial cytochrome oxidase subunit I. Mol. Phylogenet. Evol. 1999, 13, 244–254, doi:10.1006/mpev.1999.0642.
[33]  Tunnicliffe, V. The biology of hydrothermal vents: Ecology and evolution. Oceanogr. Mar. Biol. 1991, 29, 319–407.
[34]  Tunnicliffe, V.; McArthur, A.G.; McHugh, D. A biogeographical perspective of the deep-sea hydrothermal vent fauna. Adv. Mar. Biol. 1998, 34, 353–442, doi:10.1016/S0065-2881(08)60213-8.
[35]  Vishnivetskaya, T.A.; Erokhina, L.G.; Spirina, E.V.; Shatilovich, A.V.; Vorobyova, E.A.; Tsapin, A.; Gilichinsky, D. Viable phototrophs: Cyanobacteria and green algae from the permafrost darkness. In Life in Ancient Ice; Castello, J.D., Rogers, S.O., Eds.; Princeton University Press: Princeton, NJ, USA, 2005; pp. 140–158.
[36]  Vrijenhoek, R.C. Gene flow and genetic diversity in naturally fragmented metapopulations of deep-sea thermal vent animals. J. Hered. 1997, 88, 285–293, doi:10.1093/oxfordjournals.jhered.a023106.
[37]  Tarasov, V.G.; Gebruk, A.V.; Mironov, A.N.; Moskalev, L.I. Deep-sea and shallow-water hydrothermal vent communities: Two different phenomena? Chem. Geol. 2005, 224, 5–39, doi:10.1016/j.chemgeo.2005.07.021.
[38]  Zachos, J.; Pagani, M.; Sloan, L.; Thomas, E.; Billups, K. Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present. Science 2001, 292, 686–693, doi:10.1126/science.1059412.
[39]  Brambilla, E.; Hippe, H.; Hagelstein, A.; Tindall, B.J.; Stackebrandt, E. 16S rDNA diversity of cultured and uncultured prokaryotes of a mat sample from Lake Fryxell, McMurdo Dry Valleys, Antarctica. Extremophiles 2001, 5, 23–33, doi:10.1007/s007920000169.
[40]  Clocksin, K.M.; Jung, D.O.; Madigan, M.T. Cold-Active Chemoorganotrophic Bacteria from Permanently Ice-Covered Lake Hoare, McMurdo Dry Valleys, Antarctica. Appl. Environ. Microb. 2007, 73, 3077–3083, doi:10.1128/AEM.00085-07.
[41]  Laybourn-Parry, J.; Pearce, D.A. The biodiversity and ecology of Antarctic lakes: Models for evolution. Philos. Trans. Roy. Soc. B 2007, 362, 2273–2289, doi:10.1098/rstb.2006.1945.
[42]  Mosier, A.C.; Murray, A.E.; Fritsen, C.H. Microbiota within the perennial ice cover of Lake Vida, Antarctica. FEMS Microbiol. Ecol. 2007, 59, 274–288, doi:10.1111/j.1574-6941.2006.00220.x.
[43]  Kalyuzhnaya, M.G.; lsapidus, A.; Ivanova, N.; Copeland, A.C.; McHardy, A.C.; Szeto, E.; Salamov, A.; Grigoriev, I.V.; Suciu, D.; Levine, S.R. High-resolution metagenomics targets specific functional types in complex microbial communities. Nat. Biotechnol. 2008, 26, 1029–1034, doi:10.1038/nbt.1488.
[44]  Kemp, P.F.; Aller, J.Y. Estimating prokaryotic diversity: When are 16S rDNA libraries large enough? Limnol. Oceanogr. 2004, 2, 114–125, doi:10.4319/lom.2004.2.114.
[45]  Newton, R.J.; Jones, S.E.; Eiler, A.; McMahon, K.D.; Bertlisson, S. A guide to the natural history of freshwater lake bacteria. Microbiol. Mol. Biol. 2011, 75, 14–49, doi:10.1128/MMBR.00028-10.
[46]  Ravenschlag, K.; Sahm, K.; Pernthaler, J.; Amann, R. High Bacterial Diversity in Permanently Cold Marine Sediments. Appl. Environ. Microb. 1999, 65, 3982–3989.
[47]  Rogers, S.O.; Ma, L.J.; Zhao, Y.; Catranis, C.M.; Starmer, W.T.; Castello, J.D. Recommendations for elimination of contaminants and authentication of isolates in ancient ice cores. In Life in Ancient Ice; Castello, J.D., Rogers, S.O., Eds.; Princeton University Press: Princeton, NJ, USA, 2005; pp. 5–21.
[48]  Rogers, S.O.; Theraisnathan, V.; Ma, L.J.; Zhao, Y.; Zhang, G.; Shin, S.-G.; Castello, J.; Starmer, W. Comparisons of protocols to decontaminate environmental ice samples for biological and molecular examinations. Appl. Environ. Microbiol. 2005, 70, 2540–2544.
[49]  Chevreux, B.; Wetter, T.; Suhai, S. Genome sequence assembly using trace signals and additional sequence information, Computer Science and Biology. In Proceedings of the German Conference on Bioinformatics (GCB), Hannover, Germany, 4–6 October 1999; pp. 45–56.
[50]  Meyer, F.; Paarmann, D.; D’Souza, M.; Olson, R.; Glass, E.M.; Kubal, M.; Paczian, T.; Rodriguez, A.; Stevens, R.; Wilke, A. The Metagenomics RAST server—A public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinforma. 2008, 9, 386, doi:10.1186/1471-2105-9-386.
[51]  Goecks, J.; Nekrutenko, A.; Taylor, J. The Galaxy Team. Galaxy: A comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol. 2010, 11, R86, doi:10.1186/gb-2010-11-8-r86.
[52]  Moriya, Y.; Itoh, M.; Okuda, S.; Yoshizawa, A.C.; Kanehisa, K. KAAS: An automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 2007, 35, W182–W185.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133