全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Biology  2013 

Dynamic Interplay of Smooth Muscle α-Actin Gene-Regulatory Proteins Reflects the Biological Complexity of Myofibroblast Differentiation

DOI: 10.3390/biology2020555

Keywords: Myofibroblast, gene transcription, smooth muscle actin, wound healing, fibrosis

Full-Text   Cite this paper   Add to My Lib

Abstract:

Myofibroblasts (MFBs) are smooth muscle-like cells that provide contractile force required for tissue repair during wound healing. The leading agonist for MFB differentiation is transforming growth factor β1 (TGFβ1) that induces transcription of genes encoding smooth muscle α-actin (SMαA) and interstitial collagen that are markers for MFB differentiation. TGFβ1 augments activation of Smad transcription factors, pro-survival Akt kinase, and p38 MAP kinase as well as Wingless/int (Wnt) developmental signaling. These actions conspire to activate β-catenin needed for expression of cyclin D, laminin, fibronectin, and metalloproteinases that aid in repairing epithelial cells and their associated basement membranes. Importantly, β-catenin also provides a feed-forward stimulus that amplifies local TGFβ1 autocrine/paracrine signaling causing transition of mesenchymal stromal cells, pericytes, and epithelial cells into contractile MFBs. Complex, mutually interactive mechanisms have evolved that permit several mammalian cell types to activate the SMαA promoter and undergo MFB differentiation. These molecular controls will be reviewed with an emphasis on the dynamic interplay between serum response factor, TGFβ1-activated Smads, Wnt-activated β-catenin, p38/calcium-activated NFAT protein, and the RNA-binding proteins, Purα, Purβ, and YB-1, in governing transcriptional and translational control of the SMαA gene in injury-activated MFBs.

References

[1]  Hinz, B.; Phan, S.H.; Thannickal, V.J.; Prunotto, M.; Desmouliere, A.; Varga, J.; de Wever, O.; Mareel, M.; Gabbiani, G. Recent developments in myofibroblast biology: Paradigms for connective tissue remodeling. Am. J. Pathol. 2012, 180, 1340–1355, doi:10.1016/j.ajpath.2012.02.004.
[2]  Desmouliere, A.; Chaponnier, C.; Gabbiani, G. Tissue repair, contraction, and the myofibroblast. Wound Repair Regen. 2005, 13, 7–12, doi:10.1111/j.1067-1927.2005.130102.x.
[3]  Gabbiani, G. The myofibroblast in wound healing and fibrocontractive diseases. J. Pathol. 2003, 200, 500–503, doi:10.1002/path.1427.
[4]  Grinnell, F. Fibroblasts, myofibroblasts, and wound contraction. J. Cell Biol. 1994, 124, 401–404, doi:10.1083/jcb.124.4.401.
[5]  Odekon, L.E.; Blasi, F.; Rifkin, D.B. Requirement for receptor-bound urokinase in plasmin-dependent cellular conversion of latent TGF-β to TGF-β. J. Cell. Physiol. 1994, 158, 398–407, doi:10.1002/jcp.1041580303.
[6]  Roberts, A.B. Molecular and cell biology of TGF-β. Miner. Electr. Metab. 1998, 24, 111–119, doi:10.1159/000057358.
[7]  Sheppard, D. Transforming growth factor beta: A central modulator of pulmonary and airway inflammation and fibrosis. Proc. Am. Thorac. Soc. 2006, 3, 413–417, doi:10.1513/pats.200601-008AW.
[8]  Chapman, H.A. Epithelial responses to lung injury. Proc. Am. Thorac. Soc. 2012, 9, 89–95, doi:10.1513/pats.201112-053AW.
[9]  Wipff, P.J.; Rifkin, D.B.; Meister, J.J.; Hinz, B. Myofibroblast contraction activates latent TGF-beta1 from the extracellular matrix. J. Cell Biol. 2007, 179, 1311–1323, doi:10.1083/jcb.200704042.
[10]  Huang, X.; Gai, Y.; Yang, N.; Lu, B.; Samuel, C.S.; Thannickal, V.J.; Zhou, Y. Relaxin regulates myofibroblast contractility and protects against lung fibrosis. Am. J. Pathol. 2011, 179, 2751–2765, doi:10.1016/j.ajpath.2011.08.018.
[11]  Shi, Y.; Massague, J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 2003, 113, 685–700, doi:10.1016/S0092-8674(03)00432-X.
[12]  Liu, X.; Kelm, R.J., Jr.; Strauch, A.R. Transforming growth factor β1-mediated activation of the smooth muscle α-actin gene in human pulmonary myofibroblasts is inhibited by tumor necrosis factor-α via mitogen-activated protein kinase kinase 1-dependent induction of the Egr-1 transcriptional repressor. Mol. Biol. Cell 2009, 20, 2174–2185, doi:10.1091/mbc.E08-10-0994.
[13]  Zhang, A.; Liu, X.; Cogan, J.G.; Fuerst, M.D.; Polikandriotis, J.A.; Kelm, R.J.J.; Strauch, A.R. YB-1 coordinates vascular smooth muscle α-actin gene activation by TGFβ1 and thrombin during differentiation of human pulmonary myofibroblasts. Mol. Biol. Cell 2005, 16, 4931–4940, doi:10.1091/mbc.E05-03-0216.
[14]  Subramanian, S.V.; Polikandriotis, J.A.; Kelm, R.J.J.; David, J.J.; Orosz, C.G.; Strauch, A.R. Induction of vascular smooth muscle alpha-actin gene transcription in transforming growth factor beta1-activated myofibroblasts mediated by dynamic interplay between the Pur repressor proteins and Sp1/Smad coactivators. Mol. Biol. Cell 2004, 15, 4532–4543, doi:10.1091/mbc.E04-04-0348.
[15]  Higashi, K.; Inagaki, Y.; Fujimori, K.; Nakao, A.; Kaneko, H.; Nakatsuka, I. Interferon-gamma interferes with transforming growth factor-beta signaling through direct interaction of YB-1 with Smad3. J. Biol. Chem. 2003, 278, 43470–43479.
[16]  Small, E.M.; Thatcher, J.E.; Sutherland, L.B.; Kinoshita, H.; Gerard, R.D.; Richardson, J.A.; DiMaio, J.M.; Sadek, H.; Kuwahara, K.; Olson, E.N. Myocardin-related transcription factor-A controls myofibroblast activation and fibrosis in response to myocardial infarction. Circ. Res. 2010, 107, 294–304, doi:10.1161/CIRCRESAHA.110.223172.
[17]  Tomasek, J.J.; Vaughan, M.B.; Kropp, B.P.; Gabbiani, G.; Martin, M.D.; Haaksma, C.J.; Hinz, B. Contraction of myofibroblasts in granulation tissue is dependent on Rho/Rho kinase/myosin light chain phosphatase activity. Wound Repair Regen. 2006, 14, 313–320, doi:10.1111/j.1743-6109.2006.00126.x.
[18]  Hinz, B.; Celetta, G.; Tomasek, J.J.; Gabbiani, G.; Chaponnier, C. Alpha-smooth muscle actin expression upregulates fibroblast contractile activity. Mol. Biol. Cell 2001, 12, 2730–2741.
[19]  Dobaczewski, M.; Bujak, M.; Li, N.; Gonzalez-Quesada, C.; Mendoza, L.H.; Wang, X.F.; Frangogiannis, N.G. Smad3 signaling critically regulates fibroblast phenotype and function in healing myocardial infarction. Circ. Res. 2010, 107, 418–428, doi:10.1161/CIRCRESAHA.109.216101.
[20]  Chen, W.; Frangogiannis, N. The role of inflammatory and fibrogenic pathways in heart failure associated with aging. Heart Fail. Rev. 2010, 15, 415–422, doi:10.1007/s10741-010-9161-y.
[21]  Leask, A. Potential therapeutic targets for cardiac fibrosis. Circ. Res. 2010, 106, 1675–1680, doi:10.1161/CIRCRESAHA.110.217737.
[22]  Berk, B.C.; Fujiwara, K.; Lehoux, S. ECM remodeling in hypertensive heart disease. J. Clin. Invest. 2007, 117, 568–575, doi:10.1172/JCI31044.
[23]  Weber, K.T. Wound Healing in Cardiovascular Disease; Armonk Futura Publishing Co., Inc.: Armonk, NY, USA, 1995; pp. 1–320.
[24]  Duffield, J.S.; Lupher, M.; Thannickal, V.J.; Wynn, T.A. Host responses in tissue repair and fibrosis. Annu. Rev. Pathol. Mech. Dis. 2012, 8, 241–276.
[25]  Goodwin, A.; Jenkins, G. Role of integrin-mediated TGFbeta activation in the pathogenesis of pulmonary fibrosis. Biochem. Soc. Trans. 2009, 37, 849–854, doi:10.1042/BST0370849.
[26]  Wynn, T.A. Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases. J. Clin. Invest. 2007, 117, 524–529, doi:10.1172/JCI31487.
[27]  Schmauss, D.; Weis, M. Cardiac allograft vasculopathy: Recent developments. Circulation 2008, 117, 2131–2141, doi:10.1161/CIRCULATIONAHA.107.711911.
[28]  Demirci, G.; Nashan, B.; Pichlmayr, R. Fibrosis in chronic rejection of human liver allografts—Expression patterns of transforming growth factor-TGFβ1 and TGF-β3. Transplantation 1996, 62, 1776–1783, doi:10.1097/00007890-199612270-00016.
[29]  Einecke, G.; Reeve, J.; Sis, B.; Mengel, M.; Hidalgo, L.; Famulski, K.S.; Matas, A.; Kasiske, B.; Kaplan, B.; Halloran, P.F. A molecular classifier for predicting future graft loss in late kidney transplant biopsies. J. Clin. Invest. 2010, 120, 1862–1872, doi:10.1172/JCI41789.
[30]  Armstrong, A.T.; Strauch, A.R.; Starling, R.C.; Sedmak, D.D.; Orosz, C.G. Morphometric analysis of neointimal formation in murine cardiac allografts. Transplantation 1997, 63, 941–947, doi:10.1097/00007890-199704150-00006.
[31]  Armstrong, A.T.; Strauch, A.R.; Starling, R.C.; Sedmak, D.D.; Orosz, C.G. Morphometric analysis of neointimal formation in murine cardiac allografts. II. Rate and location of lesion formation. Transplantation 1997, 64, 322–328, doi:10.1097/00007890-199707270-00025.
[32]  Armstrong, A.T.; Strauch, A.R.; Starling, R.C.; Sedmak, D.D.; Orosz, C.G. Morphometric analysis of neointimal formation in murine cardiac grafts. III. Dissociation of interstitial fibrosis from neointimal formation. Transplantation 1997, 64, 1198–1202, doi:10.1097/00007890-199710270-00020.
[33]  David, J.J.; Subramanian, S.V.; Zhang, A.; Willis, W.L.; Kelm, R.J.; Leier, C.V.; Strauch, A.R. Y-box binding protein-1 implicated in translational control of fetal myocardial gene expression after cardiac transplant. Exp. Biol. Med. 2012, 237, 593–607.
[34]  Zhang, A.; David, J.J.; Subramanian, S.V.; Liu, X.; Fuerst, M.D.; Zhao, X.; Leier, C.V.; Orosz, C.G.; Kelm, R.J., Jr.; Strauch, A.R. Serum response factor neutralizes Pur alpha- and Pur beta-mediated repression of the fetal vascular smooth muscle alpha-actin gene in stressed adult cardiomyocytes. Am. J. Physiol. Cell Physiol. 2008, 294, C702–C714, doi:10.1152/ajpcell.00173.2007.
[35]  Subramanian, S.V.; Kelm, R.J., Jr.; Polikandriotis, J.A.; Orosz, C.G.; Strauch, A.R. Reprogramming of vascular smooth muscle alpha-actin gene expression as an early indicator of dysfunctional remodeling following heart transplant. Cardiovasc. Res. 2002, 54, 539–548, doi:10.1016/S0008-6363(02)00270-5.
[36]  Subramanian, S.V.; Orosz, C.G.; Strauch, A.R. Vascular smooth muscle α-actin expression as an indicator of parenchymal cell reprogramming in cardiac allografts. Transplantation 1998, 65, 1652–1656, doi:10.1097/00007890-199806270-00020.
[37]  Suzuki, J.I.; Isobe, M.; Aikawa, M.; Kawauchi, M.; Shiojima, I.; Kobayashi, N.; Tojo, A.; Suzuki, T.; Kimura, K.; Nishikawa, T.; et al. Nonmuscle and smooth muscle myosin heavy chain expression in rejected cardiac allografts—A study in rat and monkey models. Circulation 1996, 94, 1118–1124, doi:10.1161/01.CIR.94.5.1118.
[38]  Shi, C.W.; Russell, M.E.; Bianchi, C.; Newell, J.B.; Haber, E. Murine model of accelerated transplant arteriosclerosis. Circ. Res. 1994, 75, 199–207, doi:10.1161/01.RES.75.2.199.
[39]  Todd, N.; Luzina, I.; Atamas, S. Molecular and cellular mechanisms of pulmonary fibrosis. Fibrogenesis Tissue Repair 2012, 5, 1–24, doi:10.1186/1755-1536-5-1.
[40]  Grotendorst, G.R.; Rahmanie, H.; Duncan, M.R. Combinatorial signaling pathways determine fibroblast proliferation and myofibroblast differentiation. FASEB J. 2004, 18, 469–479, doi:10.1096/fj.03-0699com.
[41]  Hinz, B.; Gabbiani, G. Mechanisms of force generation and transmission by myofibroblasts. Curr. Opin. Biotechnol. 2003, 14, 538–546.
[42]  Rock, J.R.; Barkauskas, C.E.; Cronce, M.J.; Xue, Y.; Harris, J.R.; Liang, J.; Noble, P.W.; Hogan, B.L.M. Multiple stromal populations contribute to pulmonary fibrosis without evidence for epithelial to mesenchymal transition. Proc. Natl. Acad. Sci. USA 2011, 108, E1475–E1483, doi:10.1073/pnas.1117988108.
[43]  Quaggin, S.E.; Kapus, A. Scar wars: Mapping the fate of epithelial-mesenchymal-myofibroblast transition. Kidney Int. 2011, 80, 41–50, doi:10.1038/ki.2011.77.
[44]  Knapp, A.M.; Ramsey, J.E.; Wang, S.X.; Strauch, A.R.; Kelm, R.J., Jr. Structure-function analysis of mouse Pur beta II. Conformation altering mutations disrupt single-stranded DNA and protein interactions crucial to smooth muscle alpha-actin gene repression. J. Biol. Chem. 2007, 282, 35899–35909.
[45]  Knapp, A.M.; Ramsey, J.E.; Wang, S.X.; Godburn, K.E.; Strauch, A.R.; Kelm, R.J.J. Nucleoprotein interactions governing cell type-dependent repression of the mouse smooth muscle alpha-actin promoter by single-stranded DNA-binding proteins Pur alpha and Pur beta. J. Biol. Chem. 2006, 281, 7907–7918.
[46]  Kelm, R.J., Jr.; Wang, S.X.; Polikandriotis, J.A.; Strauch, A.R. Structure/function analysis of mouse purβ, a single-stranded DNA-binding repressor of vascular smooth muscle α-actin gene transcription. J. Biol. Chem. 2003, 278, 38749–38757.
[47]  Carlini, L.E.; Getz, M.J.; Strauch, A.R.; Kelm, R.J., Jr. Cryptic MCAT enhancer regulation in fibroblasts and smooth muscle cells. Suppression of TEF-1 mediated activation by the single-stranded DNA-binding proteins, Purα, Purβ, and MSY1. J. Biol. Chem. 2002, 277, 8682–8692.
[48]  Cogan, J.G.; Subramanian, S.V.; Polikandriotis, J.A.; Kelm, R.J., Jr.; Strauch, A.R. Vascular smooth muscle α-actin gene transcription during myofibroblast differentiation requires Sp1/3 protein binding proximal to the MCAT enhancer. J. Biol. Chem. 2002, 277, 36433–36442.
[49]  Becker, N.A.; Kelm, R.J., Jr.; Vrana, J.A.; Getz, M.J.; Maher, L.J.I. Altered sensitivity to single-strand-specific reagents associated with the genomic vascular smooth muscle alpha-actin promoter during myofibroblast differentiation. J. Biol. Chem. 2000, 275, 15384–15391.
[50]  Kelm, R.J., Jr.; Cogan, J.G.; Elder, P.K.; Strauch, A.R.; Getz, M.J. Molecular interactions between single-stranded DNA-binding proteins associated with all essential MCAT element in the mouse smooth muscle α-actin promoter. J. Biol. Chem. 1999, 274, 14238–14245.
[51]  Kelm, R.J., Jr.; Elder, P.K.; Getz, M.J. The single-stranded DNA-binding proteins, Purα, Purβ, and MSY1 specifically interact with an exon 3-derived mouse vascular smooth muscle α-actin messenger RNA sequence. J. Biol. Chem. 1999, 274, 38268–38275, doi:10.1074/jbc.274.53.38268.
[52]  Kelm, R.J., Jr.; Elder, P.K.; Strauch, A.R.; Getz, M.J. Sequence of cDNAs encoding components of vascular actin single- stranded DNA-binding factor 2 establish identity to Purαand Purβ. J. Biol. Chem. 1997, 272, 26727–26733.
[53]  Kelm, R.J., Jr.; Sun, S.; Strauch, A.R.; Getz, M.J. Repression of transcriptional enhancer factor-1 and activator protein-1-dependent enhancer activity by vascular actin single- stranded DNA binding factor 2. J. Biol. Chem. 1996, 271, 24278–24285.
[54]  Cogan, J.G.; Sun, S.; Stoflet, E.S.; Schmidt, L.J.; Getz, M.J.; Strauch, A.R. Plasticity of vascular smooth muscle α-actin gene transcription. Characterization of multiple, single-, and double-strand specific DNA-binding proteins in myoblasts and fibroblasts. J. Biol. Chem. 1995, 270, 11310–11321.
[55]  Sun, S.; Stoflet, E.S.; Cogan, J.G.; Strauch, A.R.; Getz, M.J. Negative regulation of the vascular smooth muscle α-actin gene in fibroblasts and myoblasts: disruption of enhancer function by sequence-specific single-stranded-DNA-binding proteins. Mol. Cell Biol. 1995, 15, 2429–2436.
[56]  Dooley, S.; Said, H.M.; Gressner, A.M.; Floege, J.; En-Nia, A.; Mertens, P.R. Y-box protein-1 is the crucial mediator of antifibrotic interferon-gamma effects. J. Biol. Chem. 2006, 281, 1784–1795.
[57]  Norman, J.T.; Lindahl, G.E.; Shakib, K.; En-Nia, A.; Yilmaz, E.; Mertens, P.R. The Y-box binding protein YB-1 suppresses collagen alpha 1(I) gene transcription via an evolutionarily conserved regulatory element in the proximal promoter. J. Biol. Chem. 2001, 276, 29880–29890.
[58]  Foster, D.N.; Min, B.; Foster, L.K.; Stoflet, E.S.; Sun, S.; Getz, M.J.; Strauch, A.R. Positive and negative cis-acting regulatory elements mediate expression of the mouse vascular smooth muscle α-actin gene. J. Biol. Chem. 1992, 267, 11995–12003.
[59]  Min, B.; Foster, D.N.; Strauch, A.R. The 5'-flanking region of the mouse vascular smooth muscle α-actin gene contains evolutionarily conserved sequence motifs within a functional promoter. J. Biol. Chem. 1990, 265, 16667–16675.
[60]  Johnson, E.M.; Kinoshita, Y.; Weinreb, D.B.; Wortman, M.J.; Simon, R.; Khalili, K.; Winckler, B.; Gordon, J. Role of Pur alpha in targeting mRNA to sites of translation in hippocampal neuronal dendrites. J. Neurosci. Res. 2006, 83, 929–943, doi:10.1002/jnr.20806.
[61]  Hautmann, M.B.; Madsen, C.S.; Owens, G.K. A transforming growth factor β (TGFβ) control element drives TGFβ-induced stimulation of smooth muscle α-actin gene expression in concert with two CArG elements. J. Biol. Chem. 1997, 272, 10948–10956, doi:10.1074/jbc.272.16.10948.
[62]  Tomasek, J.J.; McRae, J.; Owens, G.K.; Haaksma, C.J. Regulation of alpha-smooth muscle actin expression in granulation tissue myofibroblasts is dependent on the intronic CArG element and the transforming growth factor-beta1 control element. Am. J. Pathol. 2005, 166, 1343–1351, doi:10.1016/S0002-9440(10)62353-X.
[63]  Kawai-Kowase, K.; Ohshima, T.; Matsui, H.; Tanaka, T.; Shimizu, T.; Iso, T.; Arai, M.; Owens, G.K.; Kurabayashi, M. PIAS1 Mediates TGFβ-induced SM α-actin gene expression through inhibition of KLF4 function-expression by protein sumoylation. Arterioscler. Thromb. Vasc. Biol. 2009, 29, 99–106, doi:10.1161/ATVBAHA.108.172700.
[64]  Csencsits, K.; Wood, S.C.; Lu, G.; Faust, S.M.; Brigstock, D.; Eichwald, E.J.; Orosz, C.G.; Bishop, D.K. Transforming growth factor beta-induced connective tissue growth factor and chronic allograft rejection. Am. J. Transplant. 2006, 6, 959–966, doi:10.1111/j.1600-6143.2006.01292.x.
[65]  Black, F.M.; Packer, S.E.; Parker, T.G.; Michael, L.H.; Roberts, R.; Schwartz, R.J.; Schneider, M.D. The vascular smooth muscle α-actin gene is reactivated during cardiac hypertrophy provoked by load. J. Clin. Invest. 1991, 88, 1581–1588, doi:10.1172/JCI115470.
[66]  Kuwahara, K.; Kinoshita, H.; Kuwabara, Y.; Nakagawa, Y.; Usami, S.; Minami, T.; Yamada, Y.; Fujiwara, M.; Nakao, K. Myocardin-related transcription factor A is a common mediator of mechanical stress- and neurohumoral stimulation-induced cardiac hypertrophic signaling leading to activation of brain natriuretic peptide gene expression. Mol. Cell. Biol. 2010, 30, 4134–4148, doi:10.1128/MCB.00154-10.
[67]  Liu, N.; Bezprozvannaya, S.; Williams, A.H.; Qi, X.; Richardson, J.A.; Bassel-Duby, R.; Olson, E.N. microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev. 2008, 22, 3242–3254, doi:10.1101/gad.1738708.
[68]  Mann, J.; Mann, D.A. Epigenetic regulation of wound healing and fibrosis. Curr. Opin. Rheumatol. 2013, 25, 101–107.
[69]  Hu, B.; Gharaee-Kermani, M.; Wu, Z.; Phan, S.H. Epigenetic regulation of myofibroblast differentiation by DNA methylation. Am. J. Pathol. 2010, 177, 21–28, doi:10.2353/ajpath.2010.090999.
[70]  Hu, B.; Gharaee-Kermani, M.; Wu, Z.; Phan, S.H. Essential role of MeCP2 in the regulation of myofibroblast differentiation during pulmonary fibrosis. Am. J. Pathol. 2011, 178, 1500–1508, doi:10.1016/j.ajpath.2011.01.002.
[71]  Sandbo, N.; Kregel, S.; Taurin, S.; Bhorade, S.; Dulin, N.O. Critical role of serum response factor in pulmonary myofibroblast differentiation induced by TGF-β. Am. J. Respir. Cell Mol. Biol. 2009, 41, 332–338, doi:10.1165/rcmb.2008-0288OC.
[72]  Elberg, G.; Chen, L.; Elberg, D.; Chan, M.D.; Logan, C.J.; Turman, M.A. MKL1 mediates TGF-β1-induced α-smooth muscle actin expression in human renal epithelial cells. Am. J. Physiol. Renal Physiol. 2008, 294, F1116–F1128, doi:10.1152/ajprenal.00142.2007.
[73]  Sotiropoulos, A.; Gineitis, D.; Copeland, J.; Treisman, R. Signal-regulated activation of serum response factor is mediated by changes in actin dynamics. Cell 1999, 98, 159–169, doi:10.1016/S0092-8674(00)81011-9.
[74]  Sahai, E.; Alberts, A.S.; Treisman, R. RhoA effector mutants reveal distinct effector pathways for cytoskeletal reorganization, SRF activation and transformation. EMBO J. 1998, 17, 1350–1361, doi:10.1093/emboj/17.5.1350.
[75]  Treisman, R.; Alberts, A.S.; Sahai, E. Regulation of SRF activity by Rho family GTPases. Cold Spring Harb. Symp. Quant. Biol. 1998, 63, 643–651, doi:10.1101/sqb.1998.63.643.
[76]  Muehlich, S.; Wang, R.; Lee, S.M.; Lewis, T.C.; Dai, C.; Prywes, R. Serum-induced phosphorylation of the serum response factor coactivator MKL1 by the extracellular signal-regulated kinase 1/2 pathway inhibits its nuclear localization. Mol. Cell. Biol. 2008, 28, 6302–6313.
[77]  Zhang, H.Y.; Gharaee-Kermani, M.; Phan, S.H. Regulation of lung fibroblast alpha-smooth muscle actin expression, contractile phenotype, and apoptosis by IL-1 beta. J. Immunol. 1997, 158, 1392–1399.
[78]  Charbonney, E.; Speight, P.; Masszi, A.; Nakano, H.; Kapus, A. βCatenin and Smad3 regulate the activity and stability of myocardin-related transcription factor during epithelial-myofibroblast transition. Mol. Biol. Cell 2011, 22, 4472–4485, doi:10.1091/mbc.E11-04-0335.
[79]  Masszi, A.; Speight, P.; Charbonney, E.; Lodyga, M.; Nakano, H.; Szaszi, K.; Kapus, A. Fate-determining mechanisms in epithelial-myofibroblast transition: Major inhibitory role for Smad3. J. Cell Biol. 2010, 188, 383–399, doi:10.1083/jcb.200906155.
[80]  Fan, L.; Sebe, A.; Peterfi, Z.; Masszi, A.; Thirone, A.C.P.; Rotstein, O.D.; Nakano, H.; McCulloch, C.A.; Szaszi, K.; Mucsi, I.; et al. Cell contact-dependent regulation of epithelial-myofibroblast transition via the Rho-Rho kinase-phospho-myosin pathway. Mol. Biol. Cell 2007, 18, 1083–1097, doi:10.1091/mbc.E06-07-0602.
[81]  Qiu, P.; Ritchie, R.P.; Fu, Z.; Cao, D.; Cumming, J.; Miano, J.M.; Wang, D.Z.; Li, H.J.; Li, L. Myocardin enhances Smad3-mediated transforming growth factor β1 signaling in a CArG box-independent manner: Smad-binding element is an important cis element for SM22α transcription in vivo. Circ. Res. 2005, 97, 983–991, doi:10.1161/01.RES.0000190604.90049.71.
[82]  Qiu, P.; Feng, X.H.; Li, L. Interaction of Smad3 and SRF-associated complex mediates TGF-β1 signals to regulate SM22α transcription during myofibroblast differentiation. J. Mol. Cell. Cardiol. 2003, 35, 1407–1420, doi:10.1016/j.yjmcc.2003.09.002.
[83]  Sandbo, N.; Lau, A.; Kach, J.; Ngam, C.; Yau, D.; Dulin, N.O. Delayed stress fiber formation mediates pulmonary myofibroblast differentiation in response to TGF-beta. Am. J. Physiol. Lung Cell. Mol. Physiol. 2011, 301, L656–L666, doi:10.1152/ajplung.00166.2011.
[84]  Thibault, G.; Lacombe, M.J.; Schnapp, L.M.; Lacasse, A.; Bouzeghrane, F.; Lapalme, G. Upregulation of a8b1-integrin in cardiac fibroblast by angiotensin II and transforming growth factor-β1. Am. J. Physiol. Cell Physiol. 2001, 281, C1457–C1467.
[85]  Hannigan, G.E.; Coles, J.G.; Dedhar, S. Integrin-linked kinase at the heart of cardiac contractility, repair, and disease. Circ. Res. 2007, 100, 1408–1414, doi:10.1161/01.RES.0000265233.40455.62.
[86]  Lal, H.; Verma, S.K.; Foster, D.M.; Golden, H.B.; Reneau, J.C.; Watson, L.E.; Singh, H.; Dostal, D.E. Integrins and proximal signaling mechanisms in cardiovascular disease. Front. Biosci. 2009, 14, 2307–2334.
[87]  Ieda, M.; Tsuchihashi, T.; Ivey, K.N.; Ross, R.S.; Hong, T.T.; Shaw, R.M.; Srivastava, D. Cardiac fibroblasts regulate myocardial proliferation through β1 integrin signaling. Dev. Cell 2009, 16, 233–244, doi:10.1016/j.devcel.2008.12.007.
[88]  Snead, A.N.; Insel, P.A. Defining the cellular repertoire of GPCRs identifies a profibrotic role for the most highly expressed receptor, protease-activated receptor 1, in cardiac fibroblasts. FASEB J. 2012, 26, 4540–4547, doi:10.1096/fj.12-213496.
[89]  Moustakas, A.; Heldin, C.H. Dynamic control of TGFβ signaling and its links to the cytoskeleton. FEBS Lett. 2008, 582, 2051–2065, doi:10.1016/j.febslet.2008.03.027.
[90]  Zhao, X.H.; Laschinger, C.; Arora, P.; Szaszi, K.; Kapus, A.; McCulloch, C.A. Force activates smooth muscle α-actin promoter activity through the Rho signaling pathway. J. Cell Sci. 2007, 120, 1801–1809.
[91]  Olson, E.N.; Nordheim, A. Linking actin dynamics and gene transcription to drive cellular motile functions. Nat. Rev. Mol. Cell. Biol. 2010, 11, 353–365, doi:10.1038/nrm2890.
[92]  Thannickal, V.J.; Lee, D.Y.; White, E.S.; Cui, Z.; Larios, J.M.; Chacon, R.; Horowitz, J.C.; Day, R.M.; Thomas, P.E. Myofibroblast differentiation by transforming growth factor-beta1 is dependent on cell adhesion and integrin signaling via focal adhesion kinase. J. Biol. Chem. 2003, 278, 12384–12389.
[93]  Shi-Wen, X.; Thompson, K.; Khan, K.; Liu, S.; Murphy-Marshman, H.; Baron, M.; Denton, C.P.; Leask, A.; Abraham, D.J. Focal adhesion kinase and reactive oxygen species contribute to the persistent fibrotic phenotype of lesional scleroderma fibroblasts. Rheumatology 2012, 51, 2146–2154.
[94]  Kim, Y.; Kugler, M.C.; Wei, Y.; Kim, K.K.; Li, X.; Brumwell, A.N.; Chapman, H.A. Integrin α3β1-dependent β-catenin phosphorylation links epithelial Smad signaling to cell contacts. J. Cell Biol. 2009, 184, 309–322.
[95]  Kim, K.K.; Wei, Y.; Szekeres, C.; Kugler, M.C.; Wolters, P.J.; Hill, M.L.; Frank, J.A.; Brumwell, A.N.; Wheeler, S.E.; Kreidberg, J.A.; et al. Epithelial cell alpha3beta1 integrin links beta-catenin and Smad signaling to promote myofibroblast formation and pulmonary fibrosis. J. Clin. Invest. 2009, 119, 213–224.
[96]  Popova, A.P.; Bentley, J.K.; Anyanwu, A.C.; Richardson, M.N.; Linn, M.J.; Lei, J.; Wong, E.J.; Goldsmith, A.M.; Pryhuber, G.S.; Hershenson, M.B. Glycogen synthase kinase-3β-β-catenin signaling regulates neonatal lung mesenchymal stromal cell myofibroblastic differentiation. Am. J. Physiol. Lung Cell. Mol. Physiol. 2012, 303, L439–L448, doi:10.1152/ajplung.00408.2011.
[97]  Zhou, B.; Liu, Y.; Kahn, M.; Ann, D.K.; Han, A.; Wang, H.; Nguyen, C.; Flodby, P.; Zhong, Q.; Krishnaveni, M.S.; et al. Interactions between β-catenin and transforming growth factor-β signaling pathways mediate epithelial-mesenchymal transition and are dependent on the transcriptional co-activator cAMP-response element-binding protein (CREB)-binding protein (CBP). J. Biol. Chem. 2012, 287, 7026–7038, doi:10.1074/jbc.M111.276311.
[98]  Vicencio, A.G.; Lee, C.G.; Cho, S.J.; Eickelberg, O.; Chuu, Y.; Haddad, G.G.; Elias, J.A. Conditional overexpression of bioactive transforming growth factor-beta1 in neonatal mouse lung: A new model for bronchopulmonary dysplasia? Am. J. Respir. Cell Mol. Biol. 2004, 31, 650–656, doi:10.1165/rcmb.2004-0092OC.
[99]  Stanford University Target Genes of Wnt/beta-Catenin Signaling. Available online: http://stanford.edu/~rnusse/pathways/targets/ (accessed on 20 March 2013).
[100]  Stoflet, E.S.; Schmidt, L.J.; Elder, P.K.; Korf, G.M.; Foster, D.N.; Strauch, A.R.; Getz, M.J. Activation of a muscle-specific actin gene promoter in serum-stimulated fibroblasts. Mol. Biol. Cell 1992, 3, 1073–1083.
[101]  Medici, D.; Hay, E.D.; Olsen, B.R. Snail and Slug promote epithelial-mesenchymal transition through β-catenin-T-cell factor-4-dependent expression of transforming growth factor-β3. Mol. Biol. Cell 2008, 19, 4875–4887, doi:10.1091/mbc.E08-05-0506.
[102]  Willis, B.C.; Borok, Z. TGF-β-induced EMT: Mechanisms and implications for fibrotic lung disease. Am. J. Physiol. Lung Cell. Mol. Physiol. 2007, 293, L525–L534, doi:10.1152/ajplung.00163.2007.
[103]  Carthy, J.M.; Garmaroudi, F.S.; Luo, Z.; McManus, B.M. Wnt3a induces myofibroblast differentiation by upregulating TGF-β signaling through SMAD2 in a β-catenin-dependent manner. PLoS One 2011, 6, e19809.
[104]  Miyoshi, H.; Ajima, R.; Luo, C.T.; Yamaguchi, T.P.; Stappenbeck, T.S. Wnt5a potentiates TGF-β signaling to promote colonic crypt regeneration after tissue injury. Science 2012, 338, 108–113.
[105]  Zhang, P.; Cai, Y.; Soofi, A.; Dressler, G.R. Activation of Wnt11 by transforming growth factor-β drives mesenchymal gene expression through non-canonical Wnt protein signaling in renal epithelial cells. J. Biol. Chem. 2012, 287, 21290–21302.
[106]  Akhmetshina, A.; Palumbo, K.; Dees, C.; Bergmann, C.; Venalis, P.; Zerr, P.; Horn, A.; Kireva, T.; Beyer, C.; Zwerina, J.; et al. Activation of canonical Wnt signalling is required for TGF-β-mediated fibrosis. Nat. Commun. 2012, 3, doi:10.1172/JCI119663.
[107]  Bosc, L.V.G.; Layne, J.J.; Nelson, M.T.; Hill-Eubanks, D.C. Nuclear factor of activated T cells and serum response factor cooperatively regulate the activity of an α-actin intronic enhancer. J. Biol. Chem. 2005, 280, 26113–26120.
[108]  Wang, J.W.; Niu, W.; Witte, D.P.; Chernausek, S.D.; Nikiforov, Y.E.; Clemens, T.L.; Sharifi, B.; Strauch, A.R.; Fagin, J.A. Overexpression of insulin-like growth factor-binding protein-4 (IGFBP-4) in smooth muscle cells of transgenic mice through a smooth muscle α-actin-IGFBP-4 fusion gene induces smooth muscle hypoplasia. Endocrinology 1998, 139, 2605–2614.
[109]  Wang, J.W.; Niu, W.; Nikiforov, Y.; Naito, S.; Chernausek, S.; Witte, D.; LeRoith, D.; Strauch, A.; Fagin, J.A. Targeted overexpression of IGF-I evokes distinct patterns of organ remodeling in smooth muscle cell tissue beds of transgenic mice. J. Clin. Invest. 1997, 100, 1425–1439, doi:10.1172/JCI119663.
[110]  Eder, P.; Molkentin, J.D. TRPC channels as effectors of cardiac hypertrophy. Circ. Res. 2011, 108, 265–272, doi:10.1161/CIRCRESAHA.110.225888.
[111]  Davis, J.; Burr, A.; Davis, G.; Birnbaumer, L.; Molkentin, J. A TRPC6-dependent pathway for myofibroblast transdifferentiation and wound healing in-vivo. Dev. Cell 2012, 23, 705–715, doi:10.1016/j.devcel.2012.08.017.
[112]  Nishida, M.; Onohara, N.; Sato, Y.; Suda, R.; Ogushi, M.; Tanabe, S.; Inoue, R.; Mori, Y.; Kurose, H. Gα12/13-mediated up-regulation of TRPC6 negatively regulates endothelin-1-induced cardiac myofibroblast formation and collagen synthesis through nuclear factor of activated T cells activation. J. Biol. Chem. 2007, 282, 23117–23128, doi:10.1074/jbc.M611780200.
[113]  Zhang, G.Y.; Li, X.; Yi, C.G.; Pan, H.; He, G.D.; Yu, Q.; Jiang, L.F.; Xu, W.H.; Li, Z.J.; Ding, J.; et al. Angiotensin II activates connective tissue growth factor and induces extracellular matrix changes involving Smad/activation and p38 mitogen-activated protein kinase signaling pathways in human dermal fibroblasts. Exp. Dermatol. 2009, 18, 947–953, doi:10.1111/j.1600-0625.2009.00880.x.
[114]  Hecker, L.; Vittal, R.; Jones, T.; Jagirdar, R.; Luckhardt, T.R.; Horowitz, J.C.; Pennathur, S.; Martinez, F.J.; Thannickal, V.J. NADPH oxidase-4 mediates myofibroblast activation and fibrogenic responses to lung injury. Nat. Med. 2009, 15, 1077–1081.
[115]  Tomita, M.; Reinhold, M.I.; Molkentin, J.D.; Naski, M.C. Calcineurin and NFAT4 induce chondrogenesis. J. Biol. Chem. 2002, 277, 42214–42218.
[116]  Ly, D.L.; Waheed, F.; Lodyga, M.; Speight, P.; Masszi, A.; Nakano, H.; Hersom, M.; Pedersen, S.F.; Szaszi, K.; Kapus, A. Hyperosmotic stress regulates the distribution and stability of myocardin-related transcription factor, a key modulator of the cytoskeleton. Am. J. Physiol. Cell Physiol. 2013, 304, C115–C127, doi:10.1152/ajpcell.00290.2012.
[117]  Yamasaki, S.; Anderson, P. Reprogramming mRNA translation during stress. Curr. Opin. Cell Biol. 2008, 20, 222–226, doi:10.1016/j.ceb.2008.01.013.
[118]  Yang, W.H.; Bloch, D.B. Probing the mRNA processing body using protein macroarrays and “autoantigenomics”. RNA 2007, 13, 704–712, doi:10.1261/rna.411907.
[119]  Erlich, J.H.; Boyle, E.M.; Labriola, J.; Kovacich, J.C.; Santucci, R.A.; Fearns, C.; Morgan, E.N.; Yun, W.; Luther, T.; Kojikawa, O.; et al. Inhibition of the tissue factor-thrombin pathway limits infarct size after myocardial ischemia-reperfusion injury by reducing inflammation. Am. J. Pathol. 2000, 157, 1849–1862, doi:10.1016/S0002-9440(10)64824-9.
[120]  Holschermann, H.; Bohle, R.M.; Schmidt, H.; Zeller, H.; Fink, L.; Stahl, U.; Grimm, H.; Tillmanns, H.; Haberbosch, W. Hirudin reduces tissue factor expression and attenuates graft arteriosclerosis in rat cardiac allografts. Circulation 2000, 102, 357–363, doi:10.1161/01.CIR.102.3.357.
[121]  Mackman, N. The role of the tissue factor-thrombin pathway in cardiac ischemia-reperfusion injury. Semin. Vasc. Med. 2003, 3, 193–198, doi:10.1055/s-2003-40677.
[122]  Tullius, S.G.; Tilney, N.L. Both alloantigen-dependent and -independent factors influence chronic allograft rejection. Transplantation 1995, 59, 313–318.
[123]  Reusch, H.P.; Zimmermann, S.; Schaefer, M.; Paul, M.; Moelling, K. Regulation of Raf by Akt controls growth and differentiation in vascular smooth muscle cells. J. Biol. Chem. 2001, 276, 33630–33637.
[124]  Lasham, A.; Print, C.G.; Woolley, A.G.; Dunn, S.E.; Braithwaite, A.W. YB-1: Oncoprotein, prognostic marker and therapeutic target? Biochem. J. 2013, 449, 11–23, doi:10.1042/BJ20121323.
[125]  Eliseeva, I.A.; Kim, E.R.; Guryanov, S.G.; Ovchinnikov, L.P.; Lyabin, D.N. Y-box-binding protein 1 (YB-1) and its functions. Biochemistry (Mosc.) 2011, 76, 1402–1433, doi:10.1134/S0006297911130049.
[126]  Kohno, K.; Izumi, H.; Uchiumi, T.; Ashizuka, M.; Kuwano, M. The pleiotropic functions of the Y-box-binding protein, YB-1. Bioessays 2003, 25, 691–698, doi:10.1002/bies.10300.
[127]  Evdokimova, V.; Ovchinnikov, L.P.; Sorensen, P.H. Y-Box binding protein 1: Providing a new angle on translational regulation. Cell Cycle 2006, 5, 1143–1147, doi:10.4161/cc.5.11.2784.
[128]  Johnson, E.M.; Daniel, D.C.; Gordon, J. The Pur protein family: Genetic and structural features in development and disease. J. Cell. Physiol. 2013, 228, 930–937, doi:10.1002/jcp.24237.
[129]  Chen, N.; Onisko, B.; Napoli, J.L. The nuclear transcription factor RARα associates with neuronal RNA granules and suppresses translation. J. Biol. Chem. 2008, 283, 20841–20847, doi:10.1074/jbc.M802314200.
[130]  Kanai, Y.; Dohmae, N.; Hirokawa, N. Kinesin transports RNA: Isolation and characterization of an RNA-transporting granule. Neuron 2004, 43, 513–525, doi:10.1016/j.neuron.2004.07.022.
[131]  Zeng, L.H.; Fujimoto, T.; Kumamaru, E.; Irie, Y.; Miki, N.; Kuo, C.H. Characterization of novel Pur alpha-binding proteins in mouse brain. Neurochem. Int. 2004, 45, 753–758, doi:10.1016/j.neuint.2004.02.001.
[132]  Minami, T.; Sugiyama, A.; Wu, S.Q.; Abid, R.; Kodama, T.; Aird, W.C. Thrombin and phenotypic modulation of the endothelium. Arterioscler. Thromb. Vasc. Biol. 2004, 24, 41–53, doi:10.1161/01.ATV.0000099880.09014.7D.
[133]  Steinina, O.I.; Poptic, E.J.; DiCorleto, P.E. Thrombin activates a Y box-binding protein (DNA-binding protein B) in endothelial cells. J. Clin. Invest. 2000, 106, 579–587, doi:10.1172/JCI9075.
[134]  Mertens, P.R.; Harendza, S.; Pollock, A.S.; Lovett, D.H. Glomerular mesangial cell-specific transactivation of matrix metalloproteinase 2 transcription is mediated by YB-1. J. Biol. Chem. 1997, 272, 22905–22912.
[135]  Anderson, P. Post-transcriptional regulons coordinate the initiation and resolution of inflammation. Nat. Rev. Immunol. 2010, 10, 24–35, doi:10.1038/nri2685.
[136]  Onishi, H.; Kino, Y.; Morita, T.; Futai, E.; Sasagawa, N.; Ishiura, S. MBNL1 associates with YB-1 in cytoplasmic stress granules. J. Neurosci. Res. 2008, 86, 1994–2002, doi:10.1002/jnr.21655.
[137]  Goodier, J.L.; Zhang, L.; Vetter, M.R.; Kazazian, H.H., Jr. LINE-1 ORF1 protein localizes in stress granules with other RNA-binding proteins, including components of RNA interference RNA-induced silencing complex. Mol. Cell. Biol. 2007, 27, 6469–6483, doi:10.1128/MCB.00332-07.
[138]  Matsumoto, S.; Uchiumi, T.; Saito, T.; Yagi, M.; Takazaki, S.; Kanki, T.; Kang, D. Localization of mRNAs encoding human mitochondrial oxidative phosphorylation proteins. Mitochondrion 2012, 12, 391–398, doi:10.1016/j.mito.2012.02.004.
[139]  Hanssen, L.; Frye, B.C.; Ostendorf, T.; Alidousty, C.; Djudjaj, S.; Boor, P.; Rauen, T.; Floege, J.; Mertens, P.R.; Raffetseder, U. Y-Box binding protein-1 mediates profibrotic effects of calcineurin inhibitors in the kidney. J. Immunol. 2011, 187, 298–308, doi:10.4049/jimmunol.1100382.
[140]  Wehner, K.A.; Schutz, S.; Sarnow, P. OGFOD1, a novel modulator of eukaryotic translation initiation factor 2 alpha phosphorylation and the cellular response to stress. Mol. Cell. Biol. 2010, 30, 2006–2016, doi:10.1128/MCB.01350-09.
[141]  Kawaguchi, A.; Matsumoto, K.; Nagata, K. YB-1 Functions as a porter to lead influenza virus ribonucleoprotein complexes to microtubules. J. Virol. 2012, 86, 11086–11095, doi:10.1128/JVI.00453-12.
[142]  Aumiller, V.; Graebsch, A.; Kremmer, E.; Niessing, D.; Forstemann, K. Drosophila Pur-alpha binds to trinucleotide-repeat containing cellular RNAs and translocates to the early oocyte. RNA Biol. 2012, 9, 633–643, doi:10.4161/rna.19760.
[143]  Ohashi, S.; Koike, K.; Omori, A.; Ichinose, S.; Ohara, S.; Kobayashi, S.; Sato, T.A.; Anzai, K. Identification of mRNA/protein (mRNP) complexes containing Puralpha, mStaufen, fragile X protein, and myosin Va and their association with rough endoplasmic reticulum equipped with a kinesin motor. J. Biol. Chem. 2002, 277, 37804–37810.
[144]  Hirokawa, N. mRNA transport in dendrites: RNA granules, motors, and tracks. J. Neurosci. 20 2006, 26, 7139–7142, doi:10.1523/JNEUROSCI.1821-06.2006.
[145]  Nuutila, K.; Siltanen, A.; Peura, M.; Bizik, J.; Kaartinen, I.; Kuokkanen, H.; Nieminen, T.; Harjula, A.; Aarnio, P.; Vuola, J.; et al. Human skin transcriptome during superficial cutaneous wound healing. Wound Repair Regen. 2012, 20, 830–839, doi:10.1111/j.1524-475X.2012.00831.x.
[146]  Yingling, J.M.; Blanchard, K.L.; Sawyer, J.S. Development of TGF-beta signaling inhibitors for cancer therapy. Nat. Rev. Drug Discov. 2004, 3, 1011–1022.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133