全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Biology  2013 

Climate Change and Intertidal Wetlands

DOI: 10.3390/biology2010445

Keywords: mangrove, saltmarsh, climate change, sealevel rise, ocean acidification, ocean warming, molluscs, crabs

Full-Text   Cite this paper   Add to My Lib

Abstract:

Intertidal wetlands are recognised for the provision of a range of valued ecosystem services. The two major categories of intertidal wetlands discussed in this contribution are saltmarshes and mangrove forests. Intertidal wetlands are under threat from a range of anthropogenic causes, some site-specific, others acting globally. Globally acting factors include climate change and its driving cause—the increasing atmospheric concentrations of greenhouse gases. One direct consequence of climate change will be global sea level rise due to thermal expansion of the oceans, and, in the longer term, the melting of ice caps and glaciers. The relative sea level rise experienced at any one locality will be affected by a range of factors, as will the response of intertidal wetlands to the change in sea level. If relative sea level is rising and sedimentation within intertidal wetlands does not keep pace, then there will be loss of intertidal wetlands from the seaward edge, with survival of the ecosystems only possible if they can retreat inland. When retreat is not possible, the wetland area will decline in response to the “squeeze” experienced. Any changes to intertidal wetland vegetation, as a consequence of climate change, will have flow on effects to biota, while changes to biota will affect intertidal vegetation. Wetland biota may respond to climate change by shifting in distribution and abundance landward, evolving or becoming extinct. In addition, impacts from ocean acidification and warming are predicted to affect the fertilisation, larval development, growth and survival of intertidal wetland biota including macroinvertebrates, such as molluscs and crabs, and vertebrates such as fish and potentially birds. The capacity of organisms to move and adapt will depend on their life history characteristics, phenotypic plasticity, genetic variability, inheritability of adaptive characteristics, and the predicted rates of environmental change.

References

[1]  Rovai, A.S.; Menghini, R.P.; Schaeffer-Novelli, Y.; Molero, G.C.; Coelho, C. Protecting Brazil’s coastal wetlands. Science?2012, 335, 1571–1572, doi:10.1126/science.335.6076.1571.
[2]  Adam, P. Saltmarsh Ecology; Cambridge University Press: Cambridge, UK, 1990.
[3]  Lee, S.Y. Mangrove outwelling: A review. Hydrobiologia?1995, 295, 203–212, doi:10.1007/BF00029127.
[4]  Middleburg, J.J.; Nieuwenhuize, J.; Lubberts, R.K.; van den Plassche, O. Organic carbon isotope systematics of coastal marshes. Estuar. Coast. Shelf Sci.?1997, 45, 681–687, doi:10.1006/ecss.1997.0247.
[5]  Bouillon, S.; Connolly, R.M.; Lee, S.Y. Organic matter exchange and cycling in mangrove ecosystems: Recent insights from stable isotope studies. J. Sea Res.?2008, 59, 44–58, doi:10.1016/j.seares.2007.05.001.
[6]  Kristensen, E.; Bouillon, S.; Dittmar, T.; Marchand, C. Organic carbon dynamics in mangrove ecosystems; a review. Aquat. Bot.?2008, 89, 201–219, doi:10.1016/j.aquabot.2007.12.005.
[7]  Feller, I.C.; Lovelock, C.E.; Berger, U.; McKee, K.L.; Ball, M.C. Biocomplexity in mangrove ecosystems. Ann. Rev. Mar. Sci.?2010, 2, 395–417, doi:10.1146/annurev.marine.010908.163809.
[8]  Loarie, S.R.; Duffy, P.B.; Hamilton, H.; Asner, G.P.; Field, C.B.; Ackerly, D.D. The velocity of climate change. Nature?2009, 462, 1052–1055, doi:10.1038/nature08649.
[9]  Townend, I.; Pethick, J. Estuarine flooding and managed retreat. Philos. Trans. R. Soc. Lond. A?2002, 360, 1477–1495, doi:10.1098/rsta.2002.1011.
[10]  Parmesan, C.; Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature?2003, 421, 37–42, doi:10.1038/nature01286.
[11]  Poloczanska, E.; Babcock, R.; Butler, A.; Hobday, A.; Hoegh-Guldberg, O.; Kunz, T.; Matear, R.; Milton, D.; Okey, T.; Richardson, A. Climate change and Australian marine life. Oceanogr. Mar. Biol.?2007, 45, 407.
[12]  Root, T.L.; Price, J.T.; Hall, K.R.; Schneider, S.H.; Rosenzweig, C.; Pounds, J.A. Fingerprints of global warming on wild animals and plants. Nature?2003, 421, 57–60, doi:10.1038/nature01333. 12511952
[13]  Rosenzweig, C.; Karoly, D.; Vicarelli, M.; Neofotis, P.; Wu, Q.; Casassa, G.; Menzel, A.; Root, T.L.; Estrella, N.; Seguin, B. Attributing physical and biological impacts to anthropogenic climate change. Nature?2008, 453, 353–357, doi:10.1038/nature06937. 18480817
[14]  Tomlinson, P.B. The Botany of Mangroves; Cambridge University Press: Cambridge, UK, 1986.
[15]  Duke, N.C. Australia’s Mangroves:The Authoritative Guide to Australia’s Mangrove Plants; University of Queensland Centre for Marine Studies: Brisbane, Australia, 2006.
[16]  Saenger, P.; Moverley, J.H. Vegetative phenology of mangroves along the Queensland coastline. Proc. Ecol. Soc. Aust.?1985, 13, 257–265.
[17]  Stuart, S.A.; Choat, B.; Martin, K.; Holbrook, N.M.; Ball, M.C. The role of freezing in setting the latitude limits of mangrove forest. New Phytol.?2007, 173, 576–583, doi:10.1111/j.1469-8137.2006.01938.x. 17244052
[18]  Krauss, K.W.; Lovelock, C.E.; McKee, K.L.; Lopez-Hoffman, L.; Ewe, S.M.L.; Sousa, W.P. Environmental drivers in mangrove establishment and early development: A review. Aquat. Bot.?2008, 89, 105–127, doi:10.1016/j.aquabot.2007.12.014.
[19]  Walter, M. Climate. In Wet Coastal Ecosystems; Chapman, V.J., Ed.; Elsevier: Amsterdam, The Netherlands, 1977; pp. 61–67.
[20]  Herr, D.; Galland, G.A. The Ocean and Climate Change, Tools and Guidelines for Action; IUCN: Gland, Switzerland, 2009; p. 72.
[21]  Donato, D.C.; Kauffman, J.B.; Murdiyarso, D.; Kurnianto, S.; Stidham, M.; Kanninen, M. Mangroves among the most carbon-rich forests in the tropics. Nat. Geosci.?2011, doi:10.1038/NGEO1123.
[22]  SEWPAC. Issues paper. In The Role of Wetlands in the Carbon Cycle; Department of Sustainability, Environment, Water, Population and Communities: Canberra, Australia, 2012; p. 14.
[23]  Adam, P. Climate change—Not an excuse for failing to address other threats. In Wildlife and Climate Change: Towards Robust Conservation Strategies for Australian Fauna; Lunney, D., Hutchings, P.A., Eds.; Royal Zoological Society of New South Wales: Mosman, Sydney, Australia, 2012; pp. 80–91.
[24]  Chapman, V.J. Introduction. In Wet Coastal Ecosystems; Chapman, V.J., Ed.; Elsevier: Amsterdam, The Netherlands, 1977; pp. 1–29.
[25]  ap Rees, T.; Jenkin, L.E.T.; Smith, A.M.; Wilson, P.M. The metabolism of flood-tolerant plants. In Plant Life in Aquatic and Amphibious Habitats; Crawford, R.M.M., Ed.; Blackwell Scientific Publications: Oxford, UK, 1987; pp. 227–238.
[26]  Crawford, R.; Monk, L.; Zochowski, Z. Enhancement of anoxia tolerance by removal of volatile products of anaerobiosis. In Plant Life in Aquatic and Amphibious Habitats; Crawford, R.M.M., Ed.; Blackwell Scientific Publications: Oxford, UK, 1987; pp. 357–384.
[27]  Gaynard, T.; Armstrong, W. Some aspects of internal plant aeration in amphibious habitats. In Plant Life in Aquatic and Amphibious Habitats; Crawford, R.M.M., Ed.; Blackwell Scientific Publications: Oxford, UK, 1987; pp. 303–320.
[28]  Mendelssohn, I.A.; McKee, K.L. Root metabolic response of Spartina alterniflora to hypoxia. In Plant Life in Aquatic and Amphibious Habitats; Crawford, R.M.M., Ed.; Blackwell Scientific Publications: Oxford, UK, 1987; pp. 239–254.
[29]  Hovenden, M.J.; Curran, M.; Cole, M.A.; Goulter, P.F.E.; Skelton, N.J.; Allaway, W.G. Ventilation and respiration in roots of one-year-old seedlings of grey mangrove Avicennia marina (Forsk.) Vierh. Hydrobiology?1995, 295, 23–29, doi:10.1007/BF00029107.
[30]  Kirwan, M.L.; Guntenspergen, G.R. Influence of tidal range on the stability of coastal marshland. J. Geophys. Res.?2010, 115, doi:10.1029/2009JF001400.
[31]  Brearley, A. Ernest Hodgkin’s Swanland: Estuaries and Coastal Lagoons of South-Western Australia; University of Western Australia Press: Perth, Australia, 2005.
[32]  Adam, P. Saltmarshes in a time of change. Environ. Conserv.?2002, 29, 39–61, doi:10.1017/S0376892902000048.
[33]  Valiela, I. Global Coastal Change; Blackwell Scientific Publications: Oxford, UK, 2006.
[34]  Gedan, K.B.; Silliman, B.; Bertness, M. Centuries of human-driven change in salt marsh ecosystems. Ann. Rev. Mar. Sci.?2009, 1, 117–141, doi:10.1146/annurev.marine.010908.163930.
[35]  Watson, J.G. Mangrove Forests of the Malay Peninsula. Malays. For. Rec.?1926, 6, 1–275.
[36]  Pagliosa, P.R.; Rovai, A.S.; Fonseca, A.L. Carbon mismanagement in Brazil. Nat. Clim. Change?2012, 2, 764, doi:10.1038/nclimate1718.
[37]  Nixon, S.W. Between coastal marshes and coastal waters—A review of 20 years of speculation and research on the role of salt marshes in estuarine productivity and water chemistry. In Estuarine and Wetland Processes with Emphasis on Modeling; Hamilton, P., MacDonald, K.B., Eds.; Plenum: New York, NY, USA, 1980; pp. 437–525.
[38]  Shine, C.; de Klemm, C. Wetlands, water and the law. Using the law to advance wetland conservation and wise use. In IUCN Environmental Policy and Law Paper Number 38; IUCN, The World Conservation Union: Gland, Switzerland; Cambridge, UK, 1999; pp. 1–340.
[39]  Spalding, M.; Kainuma, M.; Collins, L. World Atlas of Mangroves; Earthscan: London, UK, 2010.
[40]  Giri, C.; Ocheing, E.; Tieszen, L.L.; Zhu, Z.; Singh, A.; Loveland, T.; Masek, J.; Duke, N. Status and distribution of mangrove forests of the world using earth observation satellite data. Glob. Ecol. Biogeogr.?2011, 20, 154–159, doi:10.1111/j.1466-8238.2010.00584.x.
[41]  Siikimaki, J.; Sanchirico, J.N.; Jardine, S.L. Global economic potential for reducing carbon dioxide emissions from mangrove loss. Proc. Natl. Acad. Sci.?2012, doi:10.1073/pnas.20051919.
[42]  Caldiera, K. Avoiding mangrove destruction by avoiding carbon dioxide emissions. Proc. Natl. Acad. Sci.USA?2012, 109, 14287–14288, doi:10.1073/pnas.1211718109.
[43]  Murray, B.C. Mangroves hidden value. Nat. Clim. Change?2012, 2, 773–774, doi:10.1038/nclimate1729.
[44]  Martini, I.P.; Jefferies, R.L.; Morrison, R.I.G.; Abraham, K.F. Polar coastal wetlands: Development, structure and land use. In Coastal Wetlands: An Integrated Ecosystem Approach; Perillo, G.M.E., Wolanski, E., Cahoon, D.R., Brinson, M.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2009; pp. 119–156.
[45]  Peterson, B.J.; Holmes, R.M.; McClelland, J.W.; Vorosmarty, C.J.; Lammers, R.B.; Shiklomanov, A.; Shiklomanov, I.A.; Rahmstorf, S. Increasing river discharge to the Arctic Ocean. Science?2002, 298, 2171–2173, doi:10.1126/science.1077445.
[46]  Weaver, S.C.; Reisin, W.K. Present and future arboviral threats. Antivir. Res.?2010, 85, 328–345, doi:10.1016/j.antiviral.2009.10.008.
[47]  Dale, P.E.R.; Knight, J.M. Managing mosquitoes without destroying wetlands: An eastern Australian approach. Wetl. Ecol. Manag.?2012, 20, 233–242, doi:10.1007/s11273-012-9262-6.
[48]  Knight, J.M. A model of mosquito-mangrove basin ecosystems with implications for management. Ecosystems?2011, 4, 1382–1395, doi:10.1007/s10021-011-9487-x.
[49]  Cain, S.A. Foundations of Plant Geography; Harper: New York, NY, USA, 1944.
[50]  Nettel, A.; Dodd, R.S. Drifting propagules and receding swamps: Genetic footprints of mangrove recolonization and dispersal along tropical coasts. Evolution?2007, 61, 958–971, doi:10.1111/j.1558-5646.2007.00070.x.
[51]  Cary, C.J.; Radstock, R.A.; Gill, A.M.; Williams, R.J. Global change and fire regimes in Australia. In Flammable Australia. Fire Regimes, Biodiversity and Ecosystems in a Changing World; Bradstock, R.A., Gill, A.M., Williams, R.J., Eds.; CSIRO Publishing: Melbourne, Australia, 2012; pp. 149–169.
[52]  Daiber, F.C. Conservation of Tidal Marshes; Van Nostrand Reinhold: New York, NY, USA, 1986.
[53]  Daiber, F.C. Animals of the Tidal Marsh; Van Nostrand Reinhold: New York, NY, USA, 1982.
[54]  Mitchell, L.R.; Galbrey, S.; Marra, P.P.; Irwin, R.M. Impacts of marsh management on coastal-marsh bird habitats. In Terrestrial Vertebrates of Tidal Marshes: Evolution, Ecology, and Conservation; Greenburg, R., Maldonado, J.E., Droege, S., McDonald, M.V., Eds.; Cooper Ornithological Society: Camarillo, CA, USA, 2006; pp. 155–175.
[55]  Anning, P. Pastures for Cape York peninsula. Qld. Agric. J.?1980, March-April, 148–171.
[56]  Stevenson, J.G.; Rooth, J.E.; Kearney, M.S.; Sundburg, K.L. The health and long-term stability of natural and restored marshes in Chesapeake Bay. In Concepts and Controversies in Tidal Marsh Ecology; Weinstein, M.P., Kreeger, D.A., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherland, 2000; pp. 709–735.
[57]  Boon, P.I.; Allen, T.; Brook, J.; Carr, G.; Frood, D.; Harty, C.; Hoye, J.; McMahon, A.; Mathews, S.; Rosengren, N. Mangroves and Coastal Saltmarsh of Victoria: Distribution, Condition, Threats and Management; Institute for sustainability and innovation: Victoria University, Melbourne, Australia, 2011.
[58]  Tinning, G. Recovery of Saltmarsh after Fire at Moona Moona Creek, Jervis Bay, and Its Relationship with Tidal Inundation Frequency. Unpublished Honours Thesis, School of Geography, University of New South Wales, Sydney, Australia, 1990.
[59]  Paijmans, K.; Rollet, R. The mangroves of Galley Reach, Papua New Guinea. For. Ecol. Manag.?1977, 1, 119–140.
[60]  Johns, R.J. The instability of the tropical ecosystem in New Guinea. Blumea?1986, 31, 341–371.
[61]  Frodin, D. The mangrove ecosystem in Papua New Guinea. In Mangrove Ecosystems of Asia and the Pacific. Status, Exploitation and Management; Field, C.D., Dartnall, A.J., Eds.; AIMS: Townsville, Australia, 1985; pp. 53–63.
[62]  Smith, T.J.; Roblee, M.B.; Wanless, H.R. Mangroves, hurricanes, and lightning strike. BioScience?1994, 44, 256–262, doi:10.2307/1312230.
[63]  Duke, N.C. Gap creation and regenerative processes driving diversity and structure of mangrove systems. Wetl. Ecol. Manag.?2001, 9, 257–269.
[64]  Houston, W.A. Severe hail damage to mangroves at Port Curtis, Australia. Mangroves Salt Marsh?1999, 3, 29–40, doi:10.1023/A:1009946809787.
[65]  Prahalad, V.N.; Kirkpatrick, J.B.; Mount, R.E. Tasmanian coastal saltmarsh community transitions associated with climate change and relative sea level rise 1975–2009. Aust. J. Bot.?2011, 59, 741–748.
[66]  McIvor, A.; Moller, I.; Spencer, T.; Spalding, M. Reduction of wind and swell waves by mangroves. In Natural Coastal Protection Series: Report 1. Cambridge Coastal Research Unit Working Paper 40; The Nature Conservancy and Wetlands International: Cambridge, UK, 2012; p. 27.
[67]  McIvor, A.; Spencer, T.; Moller, I.; Spalding, M. Storm surge reduction by mangroves. In Natural Coastal Protection Series: Report 2. Cambridge Coastal Research Unit Working Paper 41; The Nature Conservancy and Wetlands International: Cambridge, UK, 2012; p. 35.
[68]  Mitchener, W.K.; Blood, E.R.; Bildstein, K.L.; Brinson, M.M.; Gardner, L.R. Climate change, hurricanes and tropical storms, and rising sea level in coastal wetlands. Ecol. Appl.?1997, 7, 770–801, doi:10.1890/1051-0761(1997)007[0770:CCHATS]2.0.CO;2.
[69]  Managing the risks of extreme events and disasters to advance climate change adaptation. In Natural Coastal Protection Series: Report 2. Cambridge Coastal Research Unit Working Paper 41; Field, C.B., Barros, V., Stocker, T.F., Qin, D., Dokken, D.J., Ebi, K.L., Mastrandrea, M.D., Mach, K.J., Plattner, G.-K., Allen, S.K., et al, Eds.; Cambridge University Press: Cambridge, UK, 2012; Volume 35, p. 582.
[70]  Kemp, A.C.; Horton, B.P.; Donnelly, J.P.; Mann, M.E.; Vermeer, M.; Rahmstorf, S. Climate related sea-level variations over the past two millennia. Proc. Natl. Acad. Sci. USA?2011, 108, 11017–11022, doi:10.1073/pnas.1015619108. 21690367
[71]  Lambeck, K. Glacial rebound and sea-level change in the British Isles. Terra Res.?1991, 3, 379–389, doi:10.1111/j.1365-3121.1991.tb00166.x.
[72]  Lambeck, K.; Smither, C.; Eckman, M. Tests of glacial rebound models for Fennoscandinavia based on instrumented sea-and lake-level records. Geophys. J. Int.?1998, 135, 375–387, doi:10.1046/j.1365-246X.1998.00643.x.
[73]  Semeniuk, V. Predicting the effect of sea-level rise mangroves in northwestern Australia. J. Coast. Res.?1994, 10, 1050–1076.
[74]  Alongi, D.M. Mangrove forests: Resilience, protection from tsunamis, and responses to global climate chang. Estuar. Coast. Shelf Sci.?2008, 76, 1–13, doi:10.1016/j.ecss.2007.08.024.
[75]  Adam, P. Morecambe bay saltmarshes: 25 years of change. In British Saltmarshes; Sherwood, B.G., Gardiner, B.G., Harris, T., Eds.; Linnean Society of London: London, UK, 2000; pp. 81–107.
[76]  Cloern, J.E. Our evolving conceptual model of the coastal eutrophication problem. Mar. Ecol. Prog. Ser.?2001, 210, 223–253, doi:10.3354/meps210223.
[77]  Scavia, D.; Bricker, S.B. Coastal eutrophication assessment in the United States. Biogeochemistry?2006, 79, 187–208, doi:10.1007/s10533-006-9011-0.
[78]  Tillman, D. Relative growth rates and plant allocation patterns. Am. Nat.?1991, 138, 1269–1275, doi:10.1086/285283.
[79]  Lovelock, C.E.; Ball, M.C.; Martin, K.C.; Feller, I.C. Nutrient enrichment increases mortality of mangroves. PLoS One?2009, 4, doi:10.1371/journal.pone0005600.
[80]  Deegan, L.A.; Johnson, D.S.; Warren, R.S.; Peterson, B.J.; Fleeger, J.W.; Fagerazzi, S.; Wollheim, W.M. Coastal eutrophication as a driver of salt marsh loss. Nature?2012, 490, 388–392, doi:10.1038/nature11533.
[81]  Altieri, A.H.; Bertness, M.D.; Coverdale, T.C.; Herrmann, N.C.; Angelini, C. A trophic cascade triggers collapse of a salt-marsh ecosystem with intensive recreational fishing. Ecology?2012, 93, 1402–1410, doi:10.1890/11-1314.1.
[82]  Understanding Sea-Level Rise and Variability; Church, J.A., Woodworth, P.L., Aarup, T., Wilson, W.C., Eds.; Wiley-Blackwell: Chichester, UK, 2010.
[83]  Saintilan, N.; Rogers, K.; McKee, K. Salt-marsh-mangrove interactions in Australia and the Americas. In Coastal Wetlands: An Integrated Ecosystem Approach; Perillo, G.M.E., Wolanski, E., Cahoon, D.R., Brinson, M.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2009; pp. 855–883.
[84]  Eslami-Andargoli, L.; Dale, P.; Sipe, N.; Chaseling, J. Mangrove expansion and rainfall patterns in Moreton Bay, Southeast Queensland, Australia. Estuar. Coast. Shelf Sci.?2009, 85, 292–298, doi:10.1016/j.ecss.2009.08.011.
[85]  Clough, B.F.; Andrews, T.J.; Cowan, I.R. Physiological processes in mangroves. In Mangrove Ecosystems in Australia. Structure, Function and Management; Clough, B.F., Ed.; AIMS & ANU Press: Canberra, Australia, 1982; pp. 193–210.
[86]  Tue, N.T.; Hamaoka, H.; Sogebe, A.; Qu’y, T.D.; Nhuan, M.T.; Omori, K. Sources of sedimentary organic carbon in mangrove ecosystems from Ba Lat estuary, Red River, Vietnam. In Interdisciplinary Studies on Environmental Chemistry—Marine Environmental Modelng & Analysis; Omori, K., Guo, X., Yoshie, N., Fujii, N., Handoh, I.C., Isobe, A., Tanabe, S., Terrapub, T.S., Eds.; Terrapub: Tokyo, Japan, 2011; pp. 151–157.
[87]  Kadereit, G.; Borsch, T.; Weiring, K.; Freitag, H. Phylogeny of Amaranthaceae—Chenopodiaceae and the evolution of C4 photosynthesis. Int. J. Plant Sci.?2003, 164, 959–986, doi:10.1086/378649.
[88]  Ehleringer, J.R.; Cerling, T.E. C3 and C4 photosynthesis. In Encyclopedia of Global EnvironmentalChange. The Earth System: Biological and Ecological Dimensions of Global Environmental Change; Mooney, H.H., Canadell, J.G., Eds.; Wiley: Chichester, UK, 2002; Volume 2, pp. 186–190.
[89]  Field, C.D. Impact of expected climate change on mangroves. Hydrobiologia?1995, 295, 75–81, doi:10.1007/BF00029113.
[90]  Ball, M.C. Ecophysiology of mangroves. Trees?1988, 2, 129–142.
[91]  Ball, M.C.; Munns, R. Plant responses to salinity under elevated atmospheric concentrations of CO2. Aust. J. Bot.?1992, 40, 515–525, doi:10.1071/BT9920515.
[92]  Arp, W.; Drake, B.; Pockman, W.; Curtis, P.; Whigham, D. Interactions between C3 and C4 salt marsh plant species during four years of exposure to elevated atmospheric C02. Vegetatio?1993, 104, 133–143, doi:10.1007/BF00048149.
[93]  Arp, W.J.; Drake, B.G. Increased photosynthetic capacity of Scirpus olneyi after 4 years of exposure to elevated CO2. Plant Cell Environ.?1991, 14, 1003–1006, doi:10.1111/j.1365-3040.1991.tb00971.x.
[94]  Drake, B.; Peresta, G.; Beugeling, F.; Matamala, R. Long-term elevated CO2 exposure in a Chesapeake Bay Wetland: Ecosystem gas exchange, primary production, and tissue nitrogen. In Carbon Dioxide and Terrestrial Ecosystems; Koch, C., Mooney, H.A., Eds.; Academic Press: New York, NY, USA, 1996; pp. 197–214.
[95]  Hovenden, M.J.; Williams, A.L. The impacts of rising CO2 concentrations on Australian terrestrial species and ecosystems. Austral Ecol.?2010, 35, 665–684, doi:10.1111/j.1442-9993.2009.02074.x.
[96]  Lawler, I.R.; Foley, W.J.; Woodrow, I.E.; Cork, S.J. The effects of elevated CO2 atmospheres on the nutritional quality of Eucalyptus foliage and its interaction with soil nutrient and light availability. Oecologia?1997, 109, 59–68, doi:10.1007/s004420050058.
[97]  Booth, C.; Low, T. Rising CO2 plants and biodiversity. 2011. Available online: http://ecosmagazine.com/?paper=EC10105/ (accessed on 11 March 2013).
[98]  Stewart, G.R.; Popp, M. The ecophysiology of mangroves. In Plant Life in Aquatic and Amphibious Habitats; Crawford, R.M.M., Ed.; Blackwell Scientific Publications: Oxford, UK, 1987; pp. 335–345.
[99]  Munns, R.; Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol.?2008, 59, 651–681, doi:10.1146/annurev.arplant.59.032607.092911.
[100]  Hughes, L. Can australian biodiversity adapt to climate change? In Wildlife and Climate Change: Towards Robust Conservation Strategies for Australian Fauna; Lunney, D., Hutchings, P.A., Eds.; Royal Zoological Society of New South Wales: Mosman, Sydney, Australia, 2012; pp. 8–10.
[101]  Holt, R.D. Predation, apparent competition, and the structure of prey communities. Theor. Popul. Biol.?1977, 12, 197–229, doi:10.1016/0040-5809(77)90042-9.
[102]  Golding, R.E.; Ponder, W.F.; Byrne, M. Taxonomy and anatomy of Amphiboloidea (Gastropoda: Heterobranchia: Archeopulmonata). Zootaxa?2007, 1476, 1–50.
[103]  Kneib, R.T. The role of tidal marshes in the ecology of estuarine nekton. Oceanogr. Mar. Biol. Ann. Rev.?1997, 35, 163–220.
[104]  Piersma, T.; Lindstr?m, ?. Migrating shorebirds as integrative sentinels of global environmental change. Ibis?2004, 146, 61–69, doi:10.1111/j.1474-919X.2004.00329.x.
[105]  Ross, P.; Minchinton, T.; Ponder, W. The ecology of Molluscs in Australian Saltmarshes. In Australian Saltmarsh Ecology; Saintilan, N., Ed.; CSIRO Publishing: Melbourne, Australia, 2009; pp. 67–107.
[106]  Howard, W.R.; Anthony, K.; Schmutter, K.; Bostock, H.; Bromhead, D.; Byrne, M.; Currie, K.; Diaz-Pulido, G.; Eggins, S.; Ellwood, M.; et al. Ocean acidification. In Marine Climate Change in Australia. Impacts and Adaptation Responses Report Card for Australia; Polozanska, E.S., Hobday, A.J., Richardson, A.J., Eds.; CSIRO Publishing: Melbourne, Australia, 2012.
[107]  Lovelock, C.E.; Skilleter, S.G.; Saintilan, N. Tidal Wetlands. In Marine Climate Change in Australia. Impacts and Adaptation Responses Report Card for Australia; Poloczanska, E.S., Hobday, A.J., Richardson, A.J., Eds.; CSIRO Publishing: Melbourne, Australia, 2012.
[108]  Rombouts, I.; Beaugrand, G.; Dauvin, J.C. Potential changes in benthic macrofaunal distributions from the English Channel simulated under climate change scenarios. Estuar. Coast. Shelf Sci.?2012, 99, 153–161, doi:10.1016/j.ecss.2011.12.026.
[109]  Orr, J.C.; Fabry, V.J.; Aumont, O.; Bopp, L.; Doney, S.C.; Feely, R.A.; Gnanadesikan, A.; Gruber, N.; Ishida, A.; Joos, F. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature?2005, 437, 681–686, doi:10.1038/nature04095. 16193043
[110]  Feely, R.A.; Sabine, C.L.; Lee, K.; Berelson, W.; Kleypas, J.; Fabry, V.J.; Millero, F.J. Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science?2004, 305, 362–366, doi:10.1126/science.1097329. 15256664
[111]  Doney, S.C.; Fabry, V.J.; Feely, R.A.; Kleypas, J.A. Ocean acidification: The other CO2 problem. Mar. Sci.?2009, 1, 169–192, doi:10.1146/annurev.marine.010908.163834.
[112]  Caldeira, K.; Wickett, M.E. Anthropogenic carbon and ocean pH. Nature?2003, 425, 365–365, doi:10.1038/425365a. 14508477
[113]  Turley, C.; Blackford, J.; Widdicombe, S.; Lowe, D.; Nightingale, P.; Rees, A. Reviewing the impact of increased atmospheric CO2 on oceanic pH and the marine ecosystem. In Avoiding Dangerous Climate Change; Schellnhuber, H.J., Cramer, W., Nakicenovic, N., Wigley, T., Yohe, G., Eds.; Cambridge University Press: Cambridge, UK, 2006; Volume 8, pp. 65–70.
[114]  Guinotte, J.M.; Fabry, V.J. Ocean acidification and its potential effects on marine ecosystems. Ann. NY Acad. Sci.?2008, 1134, 320–342, doi:10.1196/annals.1439.013.
[115]  Intergovernmental Panel on Climate Change. The physical science basis. In Contribution of Working Group 1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K., Tignor, M.M.B., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007; p. 996.
[116]  P?rtner, H.O. Ecosystem effects of ocean acidification in times of ocean warming: A physiologist’s view. Mar. Ecol. Prog. Ser.?2008, 373, 203–217, doi:10.3354/meps07768.
[117]  Byrne, M.; Ho, M.; Wong, E.; Soars, N.A.; Selvakumaraswamy, P.; Shepard-Brennand, H.; Dworjanyn, S.A.; Davis, A.R. Unshelled abalone and corrupted urchins: Development of marine calcifiers in a changing ocean. Proc. R. Soc. Lond. B Biol.?2011, 278, 2376–2383, doi:10.1098/rspb.2010.2404.
[118]  Ross, P.M. Larval supply, settlement and survival of barnacles in a temperate mangrove forest. Mar. Ecol. Prog. Ser.?2001, 215, 237–249, doi:10.3354/meps215237.
[119]  Satumanatpan, S.; Keough, M.J. Roles of larval supply and behavior in determining settlement of barnacles in a temperate mangrove forest. J. Exp. Mar. Biol. Ecol.?2001, 260, 133–153, doi:10.1016/S0022-0981(01)00251-9.
[120]  Underwood, A.; Fairweather, P. Supply-side ecology and benthic marine assemblages. Trends Ecol. Evol.?1989, 4, 16–20, doi:10.1016/0169-5347(89)90008-6.
[121]  Menge, B.A.; Chan, F.; Nielsen, K.J.; Lorenzo, E.D.; Lubchenco, J. Climatic variation alters supply-side ecology: Impact of climate patterns on phytoplankton and mussel recruitment. Ecol. Monogr.?2009, 79, 379–395, doi:10.1890/08-2086.1.
[122]  Ross, P.M.; Parker, L.; O’Connor, W.A.; Bailey, E.A. The impact of ocean acidification on reproduction, early development and settlement of marine organisms. Water?2011, 3, 1005–1030, doi:10.3390/w3041005.
[123]  Bertness, M.D.; Grosholz, E. Population dynamics of the ribbed mussel, Geukensia demissa: The costs and benefits of an aggregated distirbution. Oecologia?1985, 67, 192–204, doi:10.1007/BF00384283.
[124]  Silliman, B.R.; Zieman, J.C. Top-down control of Spartina alterniflora production by periwinkle grazing in a Virginia salt Marsh. Ecology?2001, 82, 2830–2845, doi:10.1890/0012-9658(2001)082[2830:TDCOSA]2.0.CO;2.
[125]  Silliman, B.R.; Bertness, M.D. A trophic cascade regulates salt marsh primary production. Proc. Natl. Acad. Sci. USA?2002, 99, 10500–10505, doi:10.1073/pnas.162366599.
[126]  Pennings, S.C.; Bertness, M.D. Saltmarsh communities. In Marine Community Ecology; Bertness, M.D., Gaines, S.D., Hay, M.E., Eds.; Sinauer Associates Inc.: Sunderland, MA, USA, 2004; pp. 289–316.
[127]  Hutchens, J.J.; Walters, K. Gastropods abundance and biomass relationships with salt marsh vegetation within ocean-dominated South Carolina, USA estuaries. J. Shellfish Res.?2006, 25, 947–953.
[128]  Stenzel, H. Oysters: Composition of the larval shell. Science?1964, 145, 155–156, doi:10.1126/science.145.3628.155. 17821418
[129]  Ries, J.B.; Cohen, A.L.; McCorkle, D.C. Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology?2009, 37, 1131–1134, doi:10.1130/G30210A.1.
[130]  Miller, A.W.; Reynolds, A.C.; Sobrino, C.; Riedel, G.F. Shellfish face uncertain future in high CO2 world: Influence of acidification on oyster larvae calcification and growth in estuaries. PLoS One?2009, 4, doi:10.1371/journal.pone.0005661.
[131]  Beniash, E.; Ivanina, A.; Lieb, N.S.; Kurochkin, I.; Sokolova, I.M. Elevated level of carbon dioxide affects metabolism and shell formation in oysters Crassostrea virginica. Mar. Ecol. Prog. Ser.?2010, 419, 95–108, doi:10.3354/meps08841.
[132]  Waldbusser, G.G.; Voigt, E.P.; Bergschneider, H.; Green, M.A.; Newell, R.I.E. Biocalcification in the eastern oyster (Crassostrea virginica) in relation to long-term trends in Chesapeake Bay pH. Estuar. Coasts?2011, 34, 221–231, doi:10.1007/s12237-010-9307-0.
[133]  Comeau, S.; Gorsky, G.; Alliouane, S.; Gattuso, J.P. Larvae of the pteropod Cavolinia inflexa exposed to aragonite undersaturation are viable but shell-less. Mar. Biol.?2010, 157, 2341–2345, doi:10.1007/s00227-010-1493-6.
[134]  Gutowska, M.A.; P?rtner, H.O.; Melzner, F. Growth and calcification in the cephalopod Sepia officinalis under elevated seawater pCO2. Mar. Ecol. Prog. Ser.?2008, 373, 303–309, doi:10.3354/meps07782.
[135]  Lacoue-Labarthe, T.; Martin, S.; Oberh?nsli, F.; Teyssié, J.L.; Markich, S.; Jeffree, R.; Bustamante, P. Effects of increased pCO2 and temperature on trace element (Ag, Cd and Zn) bioaccumulation in the eggs of the common cuttlefish, Sepia officinalis. Biogeosciences?2009, 6, 2561–2573, doi:10.5194/bg-6-2561-2009.
[136]  Byrne, M. Impact of ocean warming and ocean acidification on marine invertebrate life history stages: Vulnerabilities and potential for persistence in a changing ocean. Oceanogr. Mar. Biol. Ann. Rev.?2011, 49, 1–42.
[137]  Gazeau, F.; Quiblier, C.; Jansen, J.M.; Gattuso, J.P.; Middelburg, J.J.; Heip, C.H.R. Impact of elevated CO2 on shellfish calcification. Geophys. Res. Lett.?2007, 34, doi:10.1029/2006GL028554.
[138]  Kurihara, H.; Kato, S.; Ishimatsu, A. Effects of increased seawater pCO2 on early development of the oyster Crassostrea gigas. Aquat. Biol.?2007, 1, 91–98, doi:10.3354/ab00009.
[139]  Kurihara, H. Effects of CO2-driven ocean acidification on the early developmental stages of invertebrates. Mar. Ecol. Prog. Ser.?2008, 373, 275–284, doi:10.3354/meps07802.
[140]  Havenhand, J.; Schlegel, P. Near-future levels of ocean acidification do not affect sperm motility and fertilization kinetics in the oyster Crassostrea gigas. Biogeosciences?2009, 6, 3009–3015, doi:10.5194/bg-6-3009-2009.
[141]  Parker, L.M.; Ross, P.M.; O’Connor, W.A. The effect of ocean acidification and temperature on the fertilization and embryonic development of the Sydney rock oyster Saccostrea glomerata (Gould 1850). Glob. Change Biol.?2009, 15, 2123–2136, doi:10.1111/j.1365-2486.2009.01895.x.
[142]  Watson, S.A.; Southgate, P.C.; Tyler, P.A.; Peck, L.S. Early larval development of the Sydney rock oyster Saccostrea glomerata under near-future predictions of CO2 driven ocean acidification. J. Shellfish Res.?2009, 28, 431–437, doi:10.2983/035.028.0302.
[143]  Parker, L.M.; Ross, P.M.; O’Connor, W.A. Comparing the effect of elevated pCO2 and temperature on the fertilization and early development of two species of oysters. Mar. Biol.?2010, 157, 2435–2452, doi:10.1007/s00227-010-1508-3.
[144]  Parker, L.M.; Ross, P.M.; O’Connor, W.A. Populations of the Sydney rock oyster, Saccostrea glomerata, vary in response to ocean acidification. Mar. Biol.?2011, 158, 689–697, doi:10.1007/s00227-010-1592-4.
[145]  Gazeau, F.; Gattuso, J.; Dawber, C.; Pronker, A.; Peene, F.; Peene, J.; Heip, C.; Middelburg, J. Effect of ocean acidification on the early life stages of the blue mussel Mytilus edulis. Biogeosciences?2010, 7, 2051–2060, doi:10.5194/bg-7-2051-2010.
[146]  Barton, A.; Hales, B.; Waldbusser, G.G.; Langdon, C.; Feely, R.A. The Pacific oyster, Crassostrea gigas, shows negative correlation to naturally elevated carbon dioxide levels: Implications for near-term ocean acidification effects. Limnol. Oceanogr.?2012, 57, 698–710, doi:10.4319/lo.2012.57.3.0698.
[147]  Calabrese, A.; Davis, H.C. The pH tolerance of embryos and larvae of Mercenaria mercenaria and Crassostrea virginica. Biol. Bull.?1966, 131, 427–436, doi:10.2307/1539982.
[148]  Zippay, M.K.L.; Hofmann, G.E. Effect of pH on gene expression and thermal tolerance of early life history stages of red abalone (Haliotis rufescens). J. Shellfish Res.?2010, 29, 429–439, doi:10.2983/035.029.0220.
[149]  Cummings, V.; Hewitt, J.; van Rooyen, A.; Currie, K.; Beard, S.; Thrush, S.; Norkko, J.; Barr, N.; Heath, P.; Halliday, N.J. Ocean acidification at high latitudes: Potential effects on functioning of the Antarctic bivalve Laternula elliptica. PLoS One?2011, 6, e16069, doi:10.1371/journal.pone.0016069. 21245932
[150]  Ellis, R.P.; Bersey, J.; Rundle, S.D.; Hall-Spencer, J.M.; Spicer, J.I. Subtle but significant effects of C02 acidified seawater on embryos of the intertidal snail, Littorina obtusata. Aquat. Biol.?2009, 5, 41–48, doi:10.3354/ab00118.
[151]  Lischka, S.; Buedenbender, J.; Boxhammer, T.; Riebesell, U. Impact of ocean acidification and elevated temperatures on early juveniles of the polar shelled pteropod Limacina helicina: Mortality, shell degradation, and shell growth. Biogeosciences?2010, 7, 8177–8214, doi:10.5194/bgd-7-8177-2010.
[152]  Cooley, S.R.; Doney, S.C. Anticipating ocean acidification’s economic consequences for commercial fisheries. Environ. Res. Lett.?2009, 4, doi:10.1088/1748-9326/4/2/024007.
[153]  Kroeker, K.J.; Kordas, R.L.; Crim, R.N.; Singh, G.G. Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol. Lett.?2010, 13, 1419–1434, doi:10.1111/j.1461-0248.2010.01518.x.
[154]  Talmage, S.C.; Gobler, C.J. Effects of past, present, and future ocean carbon dioxide concentrations on the growth and survival of larval shellfish. Proc. Natl. Acad. Sci. USA?2010, 107, 17246–17251, doi:10.1073/pnas.0913804107.
[155]  Pechenik, J.A. Larval experience and latent effects—Metamorphosis is not a new beginning. Integr. Comp. Biol.?2006, 46, 323–333, doi:10.1093/icb/icj028.
[156]  Bibby, R.; Cleall Hardsing, P.; Rundle, S.; Widdicombe, S.; Spicer, J. Ocean acidification disrupts induced defences in the intertidal gastropod Littorina littorea. Biol. Lett.?2007, 3, 699–701, doi:10.1098/rsbl.2007.0457.
[157]  Amaral, V.; Cabral, H.N.; Bishop, M.J. Effects of estuarine acidification on predator-prey interactions. Mar. Ecol. Prog. Ser.?2012, 445, 117–127, doi:10.3354/meps09487.
[158]  Amaral, V.; Cabral, H.N.; Bishop, M.J. Moderate acidification affects growth but not survival of 6-month-old oysters. Aquat. Ecol.?2012, 1–9.
[159]  Wilson, S.P.; Hyne, R.V. Toxicity of acid-sulfate soil leachate and aluminum to embryos of the Sydney rock oyster. Ecotox. Environ. Saf.?1997, 37, 30–36, doi:10.1006/eesa.1996.1514.
[160]  Bibby, R.; Widdicombe, S.; Parry, H.; Spicer, J.; Pipe, R. Effect of ocean acidification on the immune response of the blue mussel, Mytilus edulis. Aquat. Biol.?2008, 2, 67–74, doi:10.3354/ab00037.
[161]  Silliman, B.R.; van de Koppel, J.B.; Bertness, M.D.; Stanton, L.E.; Mendelssohn, I.A. Drought, snails, and large-scale die-off of Southern U.S. Saltmarshes. Science?2005, 1803-1806, 409–410.
[162]  Najjar1, R.G.; Walker, H.A.; Anderson, P.J.; Barron, E.J.; Bord, R.J.; Gibson, J.R.; Kennedy, V.S.; Knight, C.G.; Megonigal, J.P.; O’Connor, R.E.; et al. The potential impacts of climate change on the mid-Atlantic coastal region. Clim. Res.?2000, 14, 219–233, doi:10.3354/cr014219.
[163]  Parker, L.M.; Ross, P.M.; O’Connor, W.A.; Borysko, L.; Raftos, D.A.; P?rtner, H.O. Adult exposure influences offspring response to ocean acidification in oysters. Glob. Change Biol.?2012, 18, 82–92, doi:10.1111/j.1365-2486.2011.02520.x.
[164]  Byrne, M.; Selvakumaraswamy, P.; Ho, M.; Woolsey, E.; Nguyen, H. Sea urchin development in a global change hotspot, potential for southerly migration of thermotolerant propagules. Deep Sea Res. Part II?2011, 58, 712–719, doi:10.1016/j.dsr2.2010.06.010.
[165]  Byrne, M.; Soars, N.A.; Ho, M.A.; Wong, E.; McElroy, D.; Selvakumaraswamy, P.; Dworjanyn, S.A.; Davis, A.R. Fertilization in a suite of coastal marine invertebrates from South East Australia is robust to near-future ocean warming and acidification. Mar. Biol.?2010, 157, 2061–2069, doi:10.1007/s00227-010-1474-9.
[166]  Byrne, M.; Soars, N.; Selvakumaraswamy, P.; Dworjanyn, S.A.; Davis, A.R. Sea urchin fertilization in a warm, acidified and high pCO2 ocean across a range of sperm densities. Mar. Environ. Res.?2010, 69, 234–239, doi:10.1016/j.marenvres.2009.10.014.
[167]  Dupont, S.; Lundve, B.; Thorndyke, M. Near future ocean acidification increases growth rate of the lecithotrophic larvae and juveniles of the sea star Crossaster papposus. J. Exp. Zool. Part B?2010, 314, 382–389, doi:10.1002/jez.b.21342.
[168]  Kurihara, H.; Shirayama, Y. Effects of increased atmospheric CO2 on sea urchin early development. Mar. Ecol. Prog. Ser.?2004, 274, 161–169, doi:10.3354/meps274161.
[169]  Clark, D.; Lamare, M.; Barker, M. Response of sea urchin pluteus larvae (Echinodermata: Echinoidea) to reduced seawater pH: A comparison among a tropical, temperate, and a polar species. Mar. Biol.?2009, 156, 1125–1137, doi:10.1007/s00227-009-1155-8.
[170]  Havenhand, J.N.; Buttler, F.R.; Thorndyke, M.C.; Williamson, J.E. Near-future levels of ocean acidification reduce fertilization success in a sea urchin. Curr. Biol.?2008, 18, 651–652, doi:10.1016/j.cub.2008.06.015.
[171]  Byrne, M.; Ho, M.; Selvakumaraswamy, P.; Nguyen, H.D.; Dworjanyn, S.A.; Davis, A.R. Temperature, but not pH, compromises sea urchin fertilization and early development under near-future climate change scenarios. Proc. R. Soc. Lond. B Biol.?2009, 276, 1883–1888, doi:10.1098/rspb.2008.1935.
[172]  O’Donnell, M.J.; Todgham, A.E.; Sewell, M.A.; Hammond, L.T.M.; Ruggiero, K.; Fangue, N.A.; Zippay, M.L.; Hofmann, G.E. Ocean acidification alters skeletogenesis and gene expression in larval sea urchins. Mar. Ecol. Prog. Ser.?2010, 398, 157–171, doi:10.3354/meps08346.
[173]  Dupont, S.; Havenhand, J.; Thorndyke, W.; Peck, L.; Thorndyke, M. Near-future level of CO2 -driven ocean acidification radically affects larval survival and development in the brittlestar Ophiothrix fragilis. Mar. Ecol. Prog. Ser.?2008, 373, 285–294, doi:10.3354/meps07800.
[174]  Martin, S.; Richier, S.; Pedrotti, M.L.; Dupont, S.; Castejon, C.; Gerakis, Y.; Kerros, M.E.; Oberh?nsli, F.; Teyssié, J.L.; Jeffree, R. Early development and molecular plasticity in the mediterranean sea urchin Paracentrotus lividus exposed to CO2-driven acidification. J. Exp. Biol.?2011, 214, 1357–1368, doi:10.1242/jeb.051169.
[175]  Moulin, L.; Catarino, A.I.; Claessens, T.; Dubois, P. Effects of seawater acidification on early development of the intertidal sea urchin Paracentrotus lividus Lamarck 1816). Mar. Poll. Bull.?2011, 62, 48–54, doi:10.1016/j.marpolbul.2010.09.012.
[176]  Ericson, J.A.; Lamare, M.D.; Morley, S.A.; Barker, M.F. The response of two ecologically important antarctic invertebrates (Sterechinus neumayeri and Parborlasia corrugatus) to reduced seawater pH: Effects on fertilisation and embryonic development. Mar. Biol.?2010, 157, 2689–2702, doi:10.1007/s00227-010-1529-y.
[177]  O’Donnell, M.J.; Hammond, L.T.M.; Hofmann, G.E. Predicted impact of ocean acidification on a marine invertebrate: Elevated CO2 alters response to thermal stress in sea urchin larvae. Mar. Biol.?2009, 156, 439–446, doi:10.1007/s00227-008-1097-6.
[178]  Reuter, K.I.M.E.; Lotterhos, K.E.; Crim, R.N.; Thompson, C.A.; Harley, C.D.G. Elevated pCO2 increases sperm limitation and risk of polyspermy in the red sea urchin Strongylocentrotus franciscanus. Glob. Change Biol.?2011, 17, 163–171, doi:10.1111/j.1365-2486.2010.02216.x.
[179]  Abele, L.G.; Institution, S. A Review of the Grapsid Crab Genus Sesarma (Crustacea: Decapoda: Grapsidae) in America, with the Description of a New Genus; Smithsonian Institution Press: Washington, DC, USA, 1992.
[180]  Montague, C.L. The Influence of Fiddler Crab Burrows and Burrowing on Metabolic Processes in Salt Marsh Sediments. In Estuarine Comparisons; Kennedy, K.S., Ed.; Academic Press: New York, NY, USA, 1982; pp. 283–301.
[181]  Bertness, M.D. Fiddler crab regulation of Spartina alterniflora production on a New England salt marsh. Ecology?1985, 66, 1042–1055, doi:10.2307/1940564.
[182]  Smith, T.J., III; Boto, K.G.; Frusher, S.D.; Giddins, R.L. Keystone species and mangrove forest dynamics: The influence of burrowing by crabs on soil nutrient status and forest productivity. Estuar. Coast. Shelf Sci.?1991, 33, 419–432, doi:10.1016/0272-7714(91)90081-L.
[183]  Zimmer, M.; Pennings, S.; Buck, T.L.; Carefoot, T.H. Salt marsh litter and detritivores: A closer look at redundancy. Estuaries?2004, 27, 753–769, doi:10.1007/BF02912038.
[184]  Warren, J.H.; Underwood, A. Effects of burrowing crabs on the topography of mangrove swamps in New South Wales. J. Exp. Mar. Biol. Ecol.?1986, 102, 223–235, doi:10.1016/0022-0981(86)90178-4.
[185]  Mazumder, D.; Saintilan, N.; Williams, R.J. Trophic relationships between itinerant fish and crab larvae in a temperate Australian saltmarsh. Mar. Freshw. Res.?2006, 57, 193–199, doi:10.1071/MF05040.
[186]  Mazumder, D. Ecology of burrowing crabs in temperate saltmarsh of south-east Australia. In Australian Saltmarsh Ecology; Saintilan, N., Ed.; CSIRO Publishing: Melbourne, Australia, 2009; pp. 115–131.
[187]  Guest, M.A.; Connolly, R.M.; Loneragan, N.R. Carbon movement and assimilation by invertebrates in estuarine habitats at a scale of metres. Mar. Ecol. Prog. Ser.?2004, 278, 27–34, doi:10.3354/meps278027.
[188]  Findlay, H.S.; Kendall, M.A.; Spicer, J.I.; Widdicombe, S. Future high CO2 in the intertidal may compromise adult barnacle Semibalanus balanoides survival and embryonic development rate. Mar. Ecol. Prog. Ser.?2009, 389, 193–202, doi:10.3354/meps08141.
[189]  McDonald, M.R.; McClintock, J.B.; Amsler, C.D.; Rittschof, D.; Angus, R.A.; Orihuela, B.; Lutostanski, K. Effects of ocean acidification over the life history of the barnacle Amphibalanus amphitrite. Mar. Ecol. Prog. Ser.?2009, 385, 179–187, doi:10.3354/meps08099.
[190]  Findlay, H.S.; Kendall, M.A.; Spicer, J.I.; Widdicombe, S. Post-larval development of two intertidal barnacles at elevated CO2 and temperature. Mar. Biol.?2010, 157, 725–735, doi:10.1007/s00227-009-1356-1.
[191]  Findlay, H.S.; Kendall, M.A.; Spicer, J.I.; Widdicombe, S. Relative influences of ocean acidification and temperature on intertidal barnacle post-larvae at the northern edge of their geographic distribution. Estuar. Coast. Shelf Sci.?2010, 86, 675–682, doi:10.1016/j.ecss.2009.11.036.
[192]  Walther, K.; Anger, K.; P?rtner, H.O. Effects of ocean acidification and warming on the larval development of the spider crab Hyas araneus from different latitudes (54° vs. 79° N). Mar. Ecol. Prog. Ser.?2010, 417, 159–170, doi:10.3354/meps08807.
[193]  Egilsdottir, H.; Spicer, J.I.; Rundle, S.D. The effect of CO2 acidified sea water and reduced salinity on aspects of the embryonic development of the amphipod Echinogammarus marinus (Leach). Mar. Poll. Bull.?2009, 58, 1187–1191, doi:10.1016/j.marpolbul.2009.03.017.
[194]  Kurihara, H.; Ishimatsu, A. Effects of high CO2 seawater on the copepod (Acartia tsuensis) through all life stages and subsequent generations. Mar. Poll. Bull.?2008, 56, 1086–1090, doi:10.1016/j.marpolbul.2008.03.023.
[195]  Mayor, D.; Matthews, C.; Cook, K.; Zuur, A.; Hay, S. CO2 induced acidification affects hatching success in Calanus finmarchicus. Mar. Ecol. Prog. Ser.?2007, 350, 91–97, doi:10.3354/meps07142.
[196]  Ries, J.B. A physicochemical framework for interpreting the biological calcification response to CO2-induced ocean acidification. Geochim. Cosmochim. Acta?2011, 75, 4053–4064, doi:10.1016/j.gca.2011.04.025.
[197]  Hollingsworth, A.; Connolly, R.M. Feeding by fish visiting inundated subtropical saltmarsh. J. Exper. Mar. Biol. Ecol.?2006, 336, 88–98, doi:10.1016/j.jembe.2006.04.008.
[198]  Connolly, R.M. Fish on Australian Saltmarshes. In Australian Saltmarsh Ecology; Saintilan, N., Ed.; CSIRO Publishing: Melbourne, Australia, 2009; pp. 131–149.
[199]  Robertson, A.; Duke, N. Mangroves as nursery sites: Comparisons of the abundance and species composition of fish and crustaceans in mangroves and other nearshore habitats in tropical australia. Mar. Biol.?1987, 96, 193–205, doi:10.1007/BF00427019.
[200]  Odum, W.E.; Heald, E.J. Mangrove Forests and Aquatic Productivity. In Coupling of Land and Water Systems; Hasler, A.D., Ed.; Springer Verlag: New York, NY, USA, 1975; pp. 129–136.
[201]  Connolly, R.M. Saltmarsh as habitat for fish and nektonic crustaceans: Challenges in sampling designs and methods. Aust. J. Ecol.?1999, 24, 422–430, doi:10.1046/j.1442-9993.1999.00974.x.
[202]  Crinall, S.; Hindell, J. Assessing the use of saltmarsh flats by fish in a temperate australian embayment. Estuar. Coasts?2004, 27, 728–739, doi:10.1007/BF02907656.
[203]  Bloomfield, A.; Gillanders, B. Fish and invertebrate assemblages in seagrass, mangrove, saltmarsh, and nonvegetated habitats. Estuar. Coasts?2005, 28, 63–77, doi:10.1007/BF02732754.
[204]  Thomas, B.E.; Connolly, R.M. Fish use of subtropical saltmarshes in Queensland, Australia: Relationships with vegetation, water depth and distance onto the marsh. Mar. Ecol. Prog. Ser.?2001, 209, 275–288, doi:10.3354/meps209275.
[205]  Kneib, R.; Stiven, A. Growth, reproduction, and feeding of Fundulus heteroclitus (L.) on a North Carolina salt marsh. J. Exp. Mar. Biol. Ecol.?1978, 31, 121–140, doi:10.1016/0022-0981(78)90125-9.
[206]  Moy, L.D.; Levin, L.A. Are Spartina marshes a replaceable resource? A functional approach to evaluation of marsh creation efforts. Estuar. Coasts?1991, 14, 1–16, doi:10.2307/1351977.
[207]  Rozas, L.P.; LaSalle, M.W. A comparison of the diets of gulf killifish, Fundulus grandis baird and Girard, entering and leaving a Mississippi brackish marsh. Estuar. Coasts?1990, 13, 332–336, doi:10.2307/1351924.
[208]  Turner, R.E.; Boesch, D.F. Aquatic Animal Production and Wetland Relationships: Insights Gleaned Following Wetland Loss or Gain. In Ecology and Management of Wetlands; Hook, B., Ed.; Croon Helms Ltd.: Beckenham, UK, 1987.
[209]  Munday, P.L.; Dixson, D.L.; Donelson, J.M.; Jones, G.P.; Pratchett, M.S.; Devitsina, G.V.; D?ving, K.B. Ocean acidification impairs olfactory discrimination and homing ability of a marine fish. Proc. Natl. Acad. Sci. USA?2009, 106, 1848–1852, doi:10.1073/pnas.0809996106.
[210]  Munday, P.L.; Donelson, J.M.; Dixson, D.L.; Endo, G.G.K. Effects of ocean acidification on the early life history of a tropical marine fish. Proc. R. Soc. B Biol.?2009, 276, 3275–3283, doi:10.1098/rspb.2009.0784.
[211]  Checkley, D.M., Jr.; Dickson, A.G.; Takahashi, M.; Radich, J.A.; Eisenkolb, N.; Asch, R. Elevated CO2 enhances otolith growth in young fish. Science?2009, 324, 1683–1683, doi:10.1126/science.1169806.
[212]  Frommel, A.; Stiebens, V.; Clemmesen, C.; Havenhand, J. Effect of ocean acidification on marine fish sperm (Baltic cod: Gadus morhua). Biogeosciences?2010, 7, 5859–5872, doi:10.5194/bgd-7-5859-2010.
[213]  Franke, A.; Clemmesen, C. Effect of ocean acidification on early life stages of Atlantic herring (Clupea harengus L.). Biogeosciences?2011, 8, 3697–3707, doi:10.5194/bg-8-3697-2011.
[214]  Domenici, P.; Allan, B.; McCormick, M.I.; Munday, P.L. Elevated carbon dioxide affects behavioural lateralization in a coral reef fish. Biol. Lett.?2012, 8, 78–81, doi:10.1098/rsbl.2011.0591.
[215]  Hughes, R. Climate change and loss of saltmarshes: Consequences for birds. Ibis?2004, 146, 214, doi:10.1111/j.1474-919X.2004.00324.x.
[216]  Traill, L.W.; Whitehead, P.J.; Brook, B.W. How will climate change affect plant-herbivore interactions: A tropical waterbird case study. Emu?2009, 109, 126–134, doi:10.1071/MU09003.
[217]  Woodley, K. Godwits. Long-haul Champions; Raupo: Auckland, New Zealand, 2009.
[218]  Hollands, D.; Minton, C. Waders. The Shorebirds of Australia; Bloomings Books: Melbourne, Australia, 2012.
[219]  Visser, J.M.; Baltz, D.M. Ecosystem Structure of Tidal Saline Marshes. In Coastal Wetlands: An Integrated Ecosystem Approach; Perillo, G.M.E., Wolanski, E., Cahoon, D.R., Brinson, M.M., Eds.; Elsevier Science: Amsterdam, The Netherlands, 2009; pp. 425–444.
[220]  Tobias, C.; Neubauer, S.C. Saltmarsh Biogeochemistry-an Overview. In Coastal Wetlands: An Integrated Ecosystem Approach; Perillo, G.M.E., Wolanski, E., Cahoon, D.R., Brinson, M.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2009; pp. 445–493.
[221]  Twilley, R.R.; Rivera‐Monroy, V. Sediment and nutrient tradeoffs in restoring Mississippi river delta: Restoration vs. eutrophication. J. Contemp. Water Res. Educ.?2009, 141, 39–44, doi:10.1111/j.1936-704X.2009.00035.x.
[222]  Brander, L.M.; Florax, R.J.G.M.; Vermaat, J.E. The empirics of wetland valuation: A comprehensive summary and a meta-analysis of the literature. Environ. Resour. Econ.?2006, 33, 223–250, doi:10.1007/s10640-005-3104-4.
[223]  Nellemann, C.; Corcoran, E.; Duarte, E.; Valdes, L.; de Young, C.; Fonseca, L.; Grimsditch, G. Blue Carbon, A Rapid Assessment. United Nations Environment Programme; GRID-Arendal: Birkeland Trykkeri AS, Birkeland, Norway, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133