The bulk of Earth’s biosphere is cold (<5 °C) and inhabited by psychrophiles. Biocatalysts from psychrophilic organisms (psychrozymes) have attracted attention because of their application in the ongoing efforts to decrease energy consumption. Proteinases as a class represent the largest category of industrial enzymes. There has been an emphasis on employing cold-active proteases in detergents because this allows laundry operations at ambient temperatures. Proteases have been used in environmental bioremediation, food industry and molecular biology. In view of the present limited understanding and availability of cold-active proteases with diverse characteristics, it is essential to explore Earth’s surface more in search of an ideal cold-active protease. The understanding of molecular and mechanistic details of these proteases will open up new avenues to tailor proteases with the desired properties. A detailed account of the developments in the production and applications of cold-active proteases is presented in this review.
References
[1]
D’Amico, S.; Collins, T.; Marx, J.; Feller, G.; Gerday, C. Psychrophilic microorganisms: challenges for life. EMBO Rep. 2006, 7, 385–389, doi:10.1038/sj.embor.7400662.
[2]
Gomes, J.; Steiner, W. The biocatalytic potential of extremophiles and extremozymes. Food Technol. Biotechnol. 2004, 42, 223–235.
Margesin, R.; Schinner, F.; Marx, J.C.; Gerday, C. Psychrophiles: from Biodiversity to Biotechnology; Springer: Berlin, Heidelberg, 2008; pp. 211–224.
[5]
Gounot, A. Bacterial life at low temperature: physiological aspects and biotechnological implications. J. Appl. Bacteriol. 1991, 71, 386–397, doi:10.1111/j.1365-2672.1991.tb03806.x.
[6]
Huston, A.L.; Krieger-Brockett, B.B.; Deming, J.W. Remarkably low temperature optima for extracellular enzyme activity from Arctic bacteria and sea ice. Environ. Microbiol. 2000, 2, 383–388, doi:10.1046/j.1462-2920.2000.00118.x.
[7]
Feller, G.; Bussy, O.L.; Gerday, C. Expression of psychrophilic genes in mesophilic hosts: assessment of the folding state of a recombinant α-amylase. Appl. Environ. Microbiol. 1998, 64, 1163–1165.
[8]
Aghajari, N.; Feller, G.; Gerday, C.; Haser, R. Crystallization and preliminary X-ray diffraction studies of α-amylase from the Antarctic psychrophile Alteromonas haloplanctis A23. Prot. Sci. 1996, 5, 2128–2129, doi:10.1002/pro.5560051021.
[9]
Jeon, J.H.; Kim, J.T.; Kim, Y.J.; Kim, H.K.; Lee, H.S.; Kang, S.G.; Kim, S.J.; Lee, J.H. Cloning and characterization of a new cold-active lipase from a deep-sea sediment metagenome. Appl. Microbiol. Biotechnol. 2009, 81, 865–874, doi:10.1007/s00253-008-1656-2.
[10]
Suzuki, T.; Nakayama, T.; Kurihara, T.; Nishino, T.; Esaki, N. Cold-active lipolytic activity of psychrotrophic Acinetobacter sp. strain no. 6. J. Biosci. Bioeng. 2001, 92, 144–148.
[11]
Feller, G.; Amico, D.S.; Benotmane, A.M.; Joly, F.; Van Beeumen, J.; Gerday, C. Purification, characterization of nucleotide sequence of the thermolabile α–amylase from Antarctic psychrotroph Alteromonas haloplanktis A23. J. Biol. Chem. 1992, 267, 5217–5221.
[12]
Villeret, V.; Chessa, J.P.; Gerday, C.; Van Beeumen, J. Preliminary crystal structure determination of the alkaline protease from Antarctic psychrophile Pseudomonas aeruginosa. Prot. Sci. 1997, 6, 2462–2464.
[13]
Gerike, U.; Danson, M.J.; Hough, D.W. Sequencing and expression of the gene encoding a cold-active citrate synthase from an antarctic bacterium strain DS2–3R. Eur. J. Biochem. 1997, 248, 49–57.
[14]
Feller, G.; Gerday, C. Psychrophilic enzymes: molecular basis of cold adaptation. Cell. Mol. Life Sci. 1997, 53, 830–841, doi:10.1007/s000180050103.
[15]
Kim, S.Y.; Hwang, K.Y.; Kim, S.H.; Sung, H.C.; Han, Y.S.; Cho, Y. Structural basis of cold adaptation. Sequence, biochemical properties and crystal structure of malate dehydrogenase from a psychrophilic Aquaspirillum articum. J. Biol. Chem. 1999, 274, 11761–11767.
[16]
Alvarez, M.; Johan, P.H.; Zeelen, J.P.; Veronique Mainfroid, V.; Joseph, A.; Martial, J.A. Triose phosphate isomerase (TIM) of the psychrophilic bacterium Vibrio marinus. J. Biol. Chem. 1998, 273, 2199–2206.
[17]
Georlette, D.; Blaise, V.; Collins, T.; D'Amico, S. Some like it cold: biocatalysis at low temperatures. FEMS Microbiol. Rev. 2004, 28, 25–42, doi:10.1016/j.femsre.2003.07.003.
[18]
Collins, T.; Meuwis, M.A.; Stals, I.; Claeyssens, M.; Feller, G.; Gerday, C. A novel family 8 xylanase, functional and physicochemical characterization. J. Biol. Chem. 2002, 277, 35133–35139.
[19]
Russell, R.J.; Gericke, U.; Danson, M.J.; Hough, D.W.; Taylor, G.L. Structural adaptations of the cold-active citrate synthase from an Antarctic bacterium. Structure (Lond) 1998, 6, 351–361.
[20]
Birgisson, H.; Delgado, O.; Arroyo, L.G.; Hatti-Kaul, R.; Mattiasson, B. Cold-adapted yeasts as producers of cold-active polygalacturonases. Extremophiles 2003, 7, 185–193.
[21]
Akila, G.; Chandra, T.S. A novel cold-tolerant Clostridium strain PXYL1 isolated from a psychrophilic cattle manure digester that secretes thermolabile xylanase and cellulose. FEMS Microbiol. Lett. 2003, 219, 63–67, doi:10.1016/S0378-1097(02)01196-5.
[22]
Mavromatis, K.; Lorito, M.; Woo, S.L.; Bouriotis, V. Mode of action and antifungal properties of two cold-adapted chitinases. Extremophiles 2003, 7, 385–390, doi:10.1007/s00792-003-0338-3.
[23]
Sakamoto, T.; Ihara, H.; Kozakic, S.; Kawasaki, H. A cold-adapted endo-arabinanase from Penicillium chrysogenum. Biochim. Biophys. Acta 2003, 1624, 70–75.
[24]
Nakagawa, T.; Nagaoka, T.; Taniguchi, S.; Miyaji, T.; Tomizuka, N. Isolation and characterization of psychrophilic yeasts producing cold-adapted pectinolytic enzymes. Lett. Appl. Microbiol. 2004, 38, 383–387, doi:10.1111/j.1472-765X.2004.01503.x.
Godfrey, T.; West, S. Introduction to industrial enzymology. In Industrial Enzymology, 2nd; Godfrey, W., Ed.; Macmillan Press: London, UK, 1996; pp. 1–8.
[27]
Gaur, S.; Agrahari, S.; Wadhwa, N. Purification of Protease from Pseudomonas thermaerum GW1 Isolated from poultry waste site. Open Microbiol. J. 2010, 4, 67–74, doi:10.2174/1874285801004010067.
[28]
Cavicchioli, R.; Siddiqui, K.S.; Andrews, D.; Sowers, K.R. Low-temperature extremophiles and their applications. Curr. Opin. Biotechnol. 2002, 13, 253–161.
Margesin, R.; Feller, G.; Gerday, C.; Russell, N. Cold-adapted microorganisms: adaptation strategies and biotechnological potential. In The Encyclopedia of Environmental Microbiology; Bitton, Ed.; Wiley: New York, 2002; pp. 871–885.
[31]
Gerday, C.; Aittaleb, M.; Bentahir, M.; Chessa, J.P.; Claverie, P.; Collins, T.; D’Amico, S.; Dumont, J.; Garsoux, G.; Georiette, D.; Hoyoux, A.; Lonhience, T.; Meuwis, M. Cold-adapted enzymes, from fundamentals to biotechnology. Trends Biotechnol. 2000, 18, 103–107, doi:10.1016/S0167-7799(99)01413-4.
Feller, G. Molecular adaptations to cold in psychrophilic enzymes. Cell. Mol. Life Sci. 2003, 60, 648–662, doi:10.1007/s00018-003-2155-3.
[34]
Oh, K.H.; Seong, C.S.; Lee, S.W.; Kwon, O.S.; Park, Y.S. Isolation of a psychrotrophic Azospirillum sp. and characterization of its extracellular protease. FEMS Microbiol. Lett. 1999, 174, 173–178, doi:10.1111/j.1574-6968.1999.tb13565.x.
Alam, S.I.; Dube, S.; Reddy, G.S.N.; Bhattacharya, B.K.; Shivaji, S.; Singh, L. Purification and characterization of extracellular protease produced by Clostridium sp. from Schirmacher oasis, Antarctica. Enzyme Microbial. Technol. 2005, 36, 824–831, doi:10.1016/j.enzmictec.2005.01.011.
[37]
Wang, Q.; Hou, Y.; Xu, Z.; Miao, J.; Li, G. Optimization of cold-active protease production by the psychrophilic bacterium Colwellia sp NJ341 with response surface methodology. Biores. Technol. 2008, 99, 1926–1931, doi:10.1016/j.biortech.2007.03.028.
[38]
Olivera, N.L.; Sequeiros, C.; Nievas, M.L. Diversity and enzyme properties of protease-producing bacteria isolated from sub- Antarctic sediments of Isla de Los Estados, Argentina. Extremophiles 2007, 11, 517–526, doi:10.1007/s00792-007-0064-3.
[39]
Kuddus, M.; Ramteke, P.W. A cold-active extracellular metalloprotease from Curtobacterium luteum. (MTCC 7529), enzyme production and characterization. J. Gen. Appl. Microbiol. 2008, 54, 385–392, doi:10.2323/jgam.54.385.
[40]
Kasana, R.C.; Yadav, S.K. Isolation of a psychrotrophic Exiguobacterium sp SKPB5 (MTCC 7803) and characterization of its alkaline protease. Curr. Microbiol. 2007, 54, 224–229, doi:10.1007/s00284-006-0402-1.
[41]
Margesin, R.; Dieplinger, H.; Hofmann, J.; Sarg, B.; Lindner, H. A cold-active extracellular metalloprotease from Pedobacter cryoconitis-production and properties. Res. Microbiol. 2005, 156, 499–505, doi:10.1016/j.resmic.2004.12.008.
[42]
Zhu, H.Y.; Tian, Y.; Hou, Y.H.; Wang, T.H. Purification and characterization of the cold-active alkaline protease from marine cold-adaptive Penicillium chrysogenum FS010. Mol. Biol. Rep. 2009, 36, 2169–2174, doi:10.1007/s11033-008-9431-0.
[43]
Zeng, R.; Zhang, R.; Zhao, J.; Lin, N. Cold-active serine alkaline protease from the psychrophilic bacterium Pseudomonas strain DY-A: enzyme purification and characterization. Extremophiles 2003, 7, 335–337, doi:10.1007/s00792-003-0323-x.
[44]
Denner, E.B.; Mark, B.; Busse, H.J.; Turkiewicz, M.; Lubitz, W. Psychrobacter proteolyticus sp. Nov., a psychrotrophic, halotolerant bacterium isolated from the Antarctic krill Euphausia superba Dana, excreting a cold-adapted metalloprotease. Syst. Appl. Microbiol. 2001, 24, 44–53, doi:10.1078/0723-2020-00006.
[45]
Larsen, A.L.; Moe, E.; Helland, R.; Gjellesvik, D.R.; Willassen, N.P. Characterization of a recombinantly expressed proteinase K-like enzyme from a psychrotrophic Serratia sp. FEBS J. 2006, 273, 47–60, doi:10.1111/j.1742-4658.2005.05044.x.
[46]
Kristjansson, M.M.; Magnusson, O.T.; Gudmundsson, H.M.; Alfredsson, G.A.; Matsuzawa, H. Properties of a subtilisin-like proteinase from a psychrotrophic Vibrio species comparison with proteinase K and aqualysin I. Eur. J. Biochem. 1999, 260, 752–760, doi:10.1046/j.1432-1327.1999.00205.x.
[47]
Margesin, R.; Schinner, F. Characterization of a metalloprotease from psychrophilic Xanthomonas maltophilia. FEMS Microbiol. Lett. 1991, 79, 257–262, doi:10.1111/j.1574-6968.1991.tb04538.x.
[48]
Yu, Y.; Li, H.R.; Zeng, Y.X.; Chen, B. Bacterial diversity and bioprospecting for cold-active hydrolytic enzymes from culturable bacteria associated with sediment from Nella Fjord, Eastern Antarctica. Mar. Drugs 2011, 9, 184–195, doi:10.3390/md9020184.
[49]
Kuddus, M.; Ramteke, P.W. Production optimization of an extracellular cold-active alkaline protease from Stenotrophomonas maltophilia MTCC 7528 and its application in detergent industry. Afr. J. Microbiol. Res. 2011, 7, 809–816.
[50]
Thangam, E.B.; Rajkumar, G.S. Studies on the production of extracellular protease by Alcaligenes faecalis. World J. Microb. Biot. 2000, 16, 663–666, doi:10.1023/A:1008989810481.
[51]
Kobayashi, T.; Lu, J.; Li, Z.; Hung, V.S.; Kurata, A.; Hatada, Y.; Takai, K.; Ito, S.; Horikoshi, K. Extremely high alkaline protease from a deep-subsurface bacterium, Alkaliphilus transvaalensis. Appl. Microbiol. Biotechnol. 2007, 75, 71–80, doi:10.1007/s00253-006-0800-0.
[52]
Suzuki, S.; Odagami, T. Low-temperature-active thiol protease from marine bacterium Alteromonas haloplanktis. J. Biotechnol. 1997, l5, 230–233.
[53]
Damare, C.; Raghukuma, C.; Muraleedharan, U.D.; Raghukumar, S. Deep-sea fungi as a source of alkaline and cold-tolerant proteases. Enzyme Microb. Tech. 2006, 39, 172–181, doi:10.1016/j.enzmictec.2006.03.032.
[54]
Kaur, S.; Vohra, R.M.; Kapoor, M.; Beg, Q.K.; Hoondal, G.S. Enhanced production and characterization of a highly thermostable alkaline protease from Bacillus sp. P-2. World J. Microb. Biot. 2001, 17, 125–129, doi:10.1023/A:1016637528648.
[55]
Okuda, M.; Sumitomo, N.; Takimura, Y.; Ogawa, A.; Saeki, K.; Kawai, S.; Kobayashi, T.; Ito, S. A new subtilisin family: nucleotide and deduced amino acid sequences of new high-molecular-mass alkaline proteases from Bacillus spp. Extremophiles 2008, 4, 229–235.
[56]
Son, E.S.; Kim, J.I. Multicatalytic alkaline serine protease from the psychrotrophic Bacillus amyloliquefaciens S94. J. Microbiol. 2003, 41, 58–62.
[57]
Joshi, G.K.; Kumar, S.; Sharma, V. Production of moderately halotolerant, SDS stable alkaline protease from Bacillus cereus MTCC 6840 isolated from lake Nainital, Uttaranchal state, India. Braz. J. Microbiol. 2007, 38, 773–779, doi:10.1590/S1517-83822007000400034.
[58]
Toyokawa, Y.; Takahara, H.; Reungsang, A.; Fukuta, M.; Hachimine, Y.; Tachibana, S.; Yasuda, M. Purification and characterization of a halotolerant serine proteinase from thermotolerant Bacillus licheniformis RKK-04 isolated from Thai fish sauce. Appl. Microbiol. Biotechnol. 2010, 86, 1867–1875, doi:10.1007/s00253-009-2434-5.
[59]
Kumar, C.G. Purification and characterization of a thermostable alkaline protease from alkalophilic Bacillus pumilus. Lett. Appl. Microbiol. 2002, 34, 13–17, doi:10.1046/j.1472-765x.2002.01044.x.
[60]
Rao, Y.K.; Lu, S.C.; Liu, B.L.; Tzeng, Y.M. Enhanced production of an extracellular protease from Beauveria bassiana by optimization of cultivation processes. Biochem. Eng. J. 2006, 28, 57–66.
[61]
Ray, M.K.; Devi, K.U.; Kumar, G.S.; Shivaji, S. Extracellular protease from the Antarctic yeast Candida humicola. Appl. Environ. Microbiol. 1992, 58, 1918–1923.
[62]
Wang, Q.; Miao, J.L.; Hou, Y.H.; Ding, Y.; Wang, G.D.; Li, G.Y. Purification and characterization of an extracellular cold–active serine protease from the psychrophilic bacterium Colwellia sp. NJ341. Biotech. Lett. 2005, 27, 1195–1198, doi:10.1007/s10529-005-0016-x.
[63]
Huston, A.L.; Methe, B.; Deming, J.W. Purification, characterization, sequencing of an extracellular cold–active aminopeptidase produced by marine psychrophile Colwellia psychrerythraea strain 34H. Appl. Environ. Microbiol. 2004, 70, 2321–2328.
[64]
Chellappan, S.; Jasmin, C.; Basheer, S.M.; Elyas, K.K.; Bhat, S.G.; Chandrasekaran, M. Production, purification and partial characterization of a novel protease from marine Engyodontium album BTMFS10 under solid state fermentation. Process Biochem. 2006, 41, 956–961, doi:10.1016/j.procbio.2005.10.017.
[65]
Nakajima, M.; Mizusawa, K.; Yoshida, F. Purification and properties of an extracellular proteinase of psychrophilic Escherichia freundii. Eur. J. Biochem. 1974, 44, 87–96, doi:10.1111/j.1432-1033.1974.tb03460.x.
[66]
Zhang, S.C.; Sun, M.; Li, T.; Wang, Q.H.; Hao, J.H. Structure analysis of a new psychrophilic marine protease. PLoS One 2011, doi:10.1371/ journal.pone.0026939.
[67]
Morita, Y.; Hasan, Q.; Sakaguchi, T.; Murakami, Y.; Yokoyama, K.; Tamiya, E. Properties of a cold–active protease from psychrotrophic Flavobacterium balustinum P104. Appl. Microbiol. Biotechnol. 1998, 50, 669–675, doi:10.1007/s002530051349.
[68]
Turkiewicz, M.; Pazgier, M.; Kalinowska, H.; Bielecki, S. A cold adapted extracellular serine protease of the yeast. Leucosporidium antarcticum. Extremophiles 2003, 7, 435–442, doi:10.1007/s00792-003-0340-9.
[69]
Sheng, Y.X.; Lin, C.X.; Zhong, X.U.X.; Ying, Z.R. Cold-adaptive alkaline protease from the psychrophilic Planomicrobium sp. 547: Enzyme characterization and gene cloning. Adv. Polar Sci. 2011, 22, 49–54.
[70]
Xiong, H.; Song, S.; Xu, Y.; Tsoi, M.Y.; Dobretsov, S.; Qian, P.Y. Characterization of proteolytic bacteria from the Aleutian deep-sea and their proteases. J. Ind. Microbiol. Biot. 2007, 34, 63–71.
[71]
Vazquez, S.C.; Hernández, E.; Mac Cormack, W.P. Extracellular proteases from the Antarctic marine Pseudoalteromonas sp. P96–47 strain. Rev. Argent. Microbiol. 2008, 40, 63–71.
[72]
Chen, X.L.; Xie, B.B.; Lu, J.T.; He, H.L.; Zhang, Y. A novel type of subtilase from the psychrotolerant bacterium Pseudoalteromonas sp. SM9913: Catalytic and structural properties of deseasin MCP-01. Microbiology 2007, 153, 2116–2125, doi:10.1099/mic.0.2007/006056-0.
[73]
Vazquez, S.C.; Coria, S.H.; Mac Cormack, W.P. Extracellular proteases from eight psychrotolerant Antarctic strains. Microbiol. Res. 2004, 159, 157–166, doi:10.1016/j.micres.2004.03.001.
[74]
Chessa, J.P.; Petrescu, I.; Bentahir, M.; Beeumen, J.V.; Gerday, C. Purification, physico-chemical characterization and sequence of a heat labile alkaline metalloprotease isolated from a psychrophilic Pseudomonas species. Biochim. Biophys. Acta (BBA) - Protein Structure and Molecular Enzymology 2000, 1–2, 265–274.
[75]
Patil, U.; Chaudhari, A. Optimal production of alkaline protease from solvent- tolerant alkaliphilic Pseudomonas aeruginosa MTCC 7926. Indian J. Biotechnol. 2011, 10, 329–339.
[76]
Yang, C.; Yang, F.; Hao, J.; Zhang, K.; Yuan, N.; Sun, M. Identification of a proteolytic bacterium HW08 and characterization of its extracllular cold-Active alkaline metalloprotease ps5. Biosci. Biotechnol. Biochem. 2010, 74, 1220–1225, doi:10.1271/bbb.100011.
[77]
Koka, R.; Weimer, B.C. Isolation and characterization of a protease from Pseudomonas fluorescens RO98. J. Appl. Microbiol. 2000, 89, 280–288, doi:10.1046/j.1365-2672.2000.01108.x.
[78]
Hamamato, T.; Kaneda, M.; Horikoshi, K.; Kudo, T. Characterization of a Protease from a psychrotroph, Pseudomonas fluorescens 114. Appl. Environ. Microbiol. 1994, 60, 3878–3880.
[79]
Meza, J.C.; Auria, R.; Lomascolo, A.; Sigoillot, J.C.; Casalot, L. Role of ethanol on growth, laccase production and protease activity in Pycnoporus cinnabarinus ss3. Enzyme Microb. Tech. 2007, 41, 162–168, doi:10.1016/j.enzmictec.2006.12.018.
[80]
Shanmughapriya, S.; Krishnaveni, J.; Selvin, J.; Gandhimathi, R.; Arunkumar, M.; Thangavelu, T.; Kiran, G.S.; Natarajaseenivasan, K. Optimization of extracellular thermotolerant alkaline protease produced by marine Roseobacter sp. (MMD040). Bioprocess Biosyst. Eng. 2008, 31, 427–433.
[81]
Tariq, A.L.; Reyaz, A.L.; Prabakaran, J.J. Purification and characterization of 56 kDa cold-active protease from Serratia marcescens. Afr. J. Microbiol. Res. 2011, 5, 5841–5847.
[82]
Morita, Y.; Kondoha, K.; Hasanb, Q.; Sakaguchia, T.; Murakamia, Y.; Yokoyamaa, K.; Tamiyaa, E. Purification and characterization of a cold-Active protease from psychrotrophic Serratia marcescens AP3801. J. Am. Oil Chem. Soc. 1997, 11, 1377–1383.
Kulakova, L.; Galkin, A.; Kurihara, T.; Yoshimura, T.; Esaki, N. Coldactive serine alkaline protease from the psychrotrophic bacterium Shewanella strain ac10, gene cloning and enzyme purification and characterization. Appl. Environ. Microbiol. 1999, 65, 611–617.
[85]
Saba, I.; Qazi, P.H.; Rather, S.A.; Dar, R.A.; Qadri, Q.A.; Ahmad, N.; Johri, S.; Taneja, S.S.S. Purification and characterization of a cold-active alkaline protease from Stenotrophomonas sp., isolated from Kashmir, India. World J. Microbiol. Biotechnol. 2012, 28, 1071–1079, doi:10.1007/s11274-011-0905-1.
[86]
Tokiwa, Y.; Kitagawa, M.; Fan, H.; Raku, T.; Hiraguri, Y.; Shibatani, S.; Kurane, R. Synthesis of vinyl arabinose ester catalyzed by protease from Streptomyces sp. Biotechnol. Tech. 1999, 13, 173–176.
[87]
Lopes, A.; Coelho, R.R.R.; Meirelles, M.N.L.; Branquinha, M.H.; Vermelho, A.B. Extracellular serine proteinase isolated from Streptomyces alboniger: Partial characterization and effect of aprotinin on cellular structure. Mem. Inst. Oswaldo Cruz. 1999, 94, 763–770.
[88]
Elibol, M.; Moreira, A.R. Optimizing some factors affecting alkaline protease production by a marine bacterium Teredinobacter turnirae under solid state fermentation. Process Biochem. 2005, 40, 1951–1956, doi:10.1016/j.procbio.2004.07.010.
[89]
Kredics, L.; Terecskei, K.; Antal, Z.; Szekeres, A.; Hatvani, L.; Manczinger, L.; Vagvolgyi, C. Purification and preliminary characterization of a cold–adapted extracellular proteinase from Trichoderma atroviride. Acta Biol. Hung. 2008, 59, 259–268, doi:10.1556/ABiol.59.2008.2.11.
[90]
Hamamato, T.; Kaneda, M.; Kudo, T.; Horikoshi, K. Characterization of a protease from a psychrophilic Vibrio sp Strain 5709. J. Mar. Biotechnol. 1995, 2, 219–222.
[91]
Ward, O.P. Proteolytic Enzymes. In : Comprehensive Biotechnology; Moo-Young, Ed.; Pergamon Press: Oxford, UK, 1985; Volume 3, pp. 789–818.
[92]
Morihara, K. Comparative specificity of microbial proteinases. Adv. Enzymol. 1974, 41, 179–243.
Joo, H.S.; Kumar, C.G.; Park, G.C.; Paik, S.R.; Chang, C.S. Oxidant and SDS-stable alkaline protease from Bacillus clausii I–52, production and some properties. J. Appl. Microbiol. 2003, 95, 267–272, doi:10.1046/j.1365-2672.2003.01982.x.
[95]
Vazquez, S.C.; MacCormack, W.P.; Rios Merino, L.N.; Fraile, E.R. Factors influencing protease production by two Antarctic strains of Stenotrophomonas maltophilia. Rev. Argent. Microbiol. 2000, 32, 53–62.
[96]
Dube, S.; Singh, L.; Alam, S.I. Proteolytic anaerobic bacteria from lake sediment of Antarctica. Enzyme Microb. Tech. 2001, 20, 114–118, doi:10.1016/S0141-0229(00)00287-8.
[97]
Saeki, K.; Iwata, J.; Watanabe, Y.; Tamai, Y. Purification and characterization of an alkaline protease from Oerskovia xanthineolytica TK-1. J. Ferment. Bioeng. 1994, 77, 554–556, doi:10.1016/0922-338X(94)90128-7.
[98]
Khairullin, R.F.; Mikhailova, A.G.; Sebyakina, T.Y.; Lubenets, N.L.; Ziganshin, R.H.; Demidyuk, I.V.; Gromova, T.Y.; Kostrov, S.V.; Rumsh, L.D. Oligopeptidase B from Serratia proteamaculans. I. Determination of primary structure, isolation, and purification of wild-type and recombinant enzyme variants. Biochem. (Moscow) 2009, 74, 1164–1172, doi:10.1134/S0006297909100137.
[99]
Zambare, V.; Nilegaonkar, S.; Kanekar, P. A novel extracellular protease from Pseudomonas aeruginosa MCM B-327: Enzyme production and its partial characterization. New Biotechnol. 2011, 28, 173–181.
Vazquez, S.; Ruberto, L.; Cormack, W.M. Properties of extracellular proteases from three psychrotolerant Stenotrophomonas maltophilia isolated from Antarctic soil. Polar Biol. 2005, 28, 319–325, doi:10.1007/s00300-004-0673-6.
[102]
Irwin, J.A.; Alfredesson, G.A.; Lanzetti, A.J.; Haflidi, M.; Gudmundsson, H.M.; Engel, P.C. Purification and characterization of a serine peptidase from the marine psychrophile strain PA-43. FEMS Microbiol. Lett. 2001, 201, 285–290, doi:10.1111/j.1574-6968.2001.tb10770.x.
[103]
Feller, G.; Narinx, E.; Arpingy, J.L.; Aittaleb, M.; Baise, E.; Genicot, S.; Gerday, C. Enzymes from psychrophilic organisms. FEMS Microbiol. Rev. 1996, 18, 189–202, doi:10.1111/j.1574-6976.1996.tb00236.x.
[104]
Feller, G.; Payan, F.; Theys, F.; Qian, M.; Haser, R.; Gerday, C. Stability and structural analysis of α-amylase from the Antarctic psychrophile Alteromonas haloplanctis A23. Eur. J. Biochem. 1994, 222, 441–447, doi:10.1111/j.1432-1033.1994.tb18883.x.
[105]
Yan, B.Q.; Chen, X.L.; Hou, X.Y.; He, H.L.; Zhou, B.C.; Zhang, Y.Z. Molecular analysis of the gene encoding a cold-adapted halophilic subtilase from deep-sea psychrotolerant bacterium Pseudoalteromonas sp. SM9913: cloning, expression, characterization and function analysis of the C-terminal PPC domains. Extremophiles 2009, 13, 725–733, doi:10.1007/s00792-009-0263-1.
[106]
Patel, T.R.; Jackman, D.M.; Bartlett, F.M. Heat-Stable protease from Pseudomonas fluorescens T16, purification by affinity column chromatography and characterization. Appl. Environ. Microbiol. 1983, 46, 333–337.
[107]
Kim, J.; Lee, S.M.; Jung, H.J. Characterization of calcium-activated bifunctional peptidase of the psychrotrophic Bacillus cereus. J. Microbiol. 2005, 43, 237–243.
[108]
Ni, X.; Yue, L.; Chi, Z.; Li, J.; Wang, X.; Madzak, C. Alkaline protease gene cloning from the marine yeast Aureobasidium pullulans HN2–3 and the protease surface display on Yarrowia lipolytica for bioactive peptide production. J. Mar. Biotechnol. 2009, 11, 81–89, doi:10.1007/s10126-008-9122-9.
[109]
Wintrode, P.L.; Miyazaki, K.; Arnold, F.H. Cold adaptation of a mesophilic subtilisin-like protease by laboratory evolution. J. Biochem. 2000, 275, 31635–31640.
[110]
Taguchi, S.; Ozaki, A.; Momose, H. Engineering of a Cold-adapted protease by sequential random mutagenesis and a screening system. Appl. Environ. Microbiol. 1998, 64, 492–495.
[111]
Parrilli, E.; Vizio, D.D.; Cirulli, C.; Tutino, M.L. Development of an improved Pseudoalteromonas haloplanktis TAC125 strain for recombinant protein secretion at low temperature. Microb. Cell Fact. 2008, doi:10.1186/1475-2859-7-2.
[112]
Huston, A.L. Psychrophiles: From Biodiversity to Biotechnology; Springer: Heidelberg, Germany, 2008; pp. 347–363.
[113]
Almog, O.; González, A.; Godin, N.; de Leeuw, M.; Mekel, M.J.; Klein, D.; Braun, S. The crystal structures of the psychrophilic subtilisin S41 and the mesophilic subtilisin Sph reveal the same calcium-loaded state. Proteins 2009, 74, 489–496, doi:10.1002/prot.22175.
[114]
Trimbur, D.E.; Gutshall, K.R.; Prema, P.; Brenchley, J.E. Characterization of a psychrotrophic Arthrobacter gene and its cold-active beta galactosidase. Appl. Environ. Microbiol. 1994, 60, 4544–4552.
[115]
Feller, G.; Thiry, M.; Gerday, C. Nucleotide sequence of the lipase gene lip2 from the Antarctic psychrotroph Moraxella TA 144 and site-specific mutagenesis of the conserved serine and histidine residues. DNA Cell Biol. 1991, 10, 381–388, doi:10.1089/dna.1991.10.381.
[116]
Arpigny, J.L.; Feller, G.; Gerday, C. Cloning, sequence and structural features of a lipase from the Antarctic facultative psychrophilic Psychrobacter immobilis B10. Biochim. Biophys. Acta 1993, 1171, 331–333.
[117]
Dong, D.; Ihara, T.; Motoshima, H.; Watanabe, K. Crystallization and preliminary X-ray crystallographic studies of a psychrophilic subtilisin-like protease Apa1 from Antarctic Pseudoalteromonas sp. strain AS-11. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 2005, 61, 308–311, doi:10.1107/S1744309105004082.
[118]
Chevrier, B.; Schalk, C.; D'Orchymont, H.; Rondeau, J.M.; Moras, D.; Tarnus, C. Crystal structure of Aeromonas proteolytica aminopeptidase: a prototypical member of the co-catalytic zinc enzyme family. Structure 1994, 2, 283–291, doi:10.1016/S0969-2126(00)00030-7.
[119]
Papaleo, E.; Pasi, M.; Tiberti, M.; De Gioia, L. Molecular dynamics of mesophilic-like mutants of a cold-adapted enzyme: Insights into distal effects induced by the mutations. PLoS ONE 2011, doi:10.1371/journal.pone.0024214.
Miyazaki, K.; Wintrode, P.L.; Grayling, R.A.; Rubingh, D.N.; Arnold, F.H. Directed evolution study of temperature adaptation in a psychrophilic enzyme. J. Mol. Biol. 2000, 297, 1015–1026, doi:10.1006/jmbi.2000.3612.
[122]
Kasana, R.C. Proteases from psychrotrophs: An overview. Crit. Rev. Microbiol. 2010, 36, 134–145, doi:10.3109/10408410903485525.
[123]
Couto, G.H.; Glogauer, A.; Faoro, H.; Chubatsu, L.S.; Souza, E.M.; Margesin, F.O. Isolation of a novel lipase from a metagenomic library derived from mangrove sediment from the south Brazilian coast. Genet. Mol. Res. 2010, 9, 514–523, doi:10.4238/vol9-1gmr738.
[124]
Roh, C.; Villatte, F. Isolation of a low-temperature adapted lipolytic enzyme from uncultivated micro-organism. J. Appl. Microbiol. 2008, 105, 116–123, doi:10.1111/j.1365-2672.2007.03717.x.
[125]
Voget, S.; Steele, H.L.; Streit, W.R. Characterization of a metagenome-derived halotolerant cellulase. J. Biotechnol. 2006, 126, 26–36, doi:10.1016/j.jbiotec.2006.02.011.
[126]
Sharma, S.; Khan, F.G.; Qazi, G.N. Molecular cloning and characterization of amylase from soil metagenomic library derived from Northwestern Himalayas. Appl. Microbiol. Biotechnol. 2010, 86, 1821–1828, doi:10.1007/s00253-009-2404-y.
[127]
Lee, C.C.; Kibblewhite-Accinelli, R.E.; Wagschal, K.; Robertson, G.H.; Wong, D.W.S. Cloning and characterization of a cold-active xylanase enzyme from an environmental DNA library. Extremophiles 2006, 10, 295–300, doi:10.1007/s00792-005-0499-3.
[128]
Berlemont, R.; Pipers, R.; Delsaute, M.; Angiono, F.; Feller, G.; Galleni, M.; Power, P. Exploring the Antarctic soil metagenome as a source of novel cold-adapted enzymes and genetic mobile elements. Rev. Argent. Microbiol. 2011, 43, 94–103.
[129]
Tondo, E.C.; Lakus, F.R.; Oliveira, F.A.; Brandelli, A. Identification of heat stable protease of Klebsiella oxytoca isolated from raw milk. Lett. Appl. Microbiol. 2004, 38, 146–150, doi:10.1111/j.1472-765X.2003.01461.x.
[130]
Secades, P.; Alvarez, B.; Guijarro, J.A. Purification and characterization of a psychrophilic calcium induced, growth-phase dependent metalloprotease from the fish pathogen Flavobacterium psychrophilum. Appl. Environ. Microbiol. 2001, 67, 2436–2444, doi:10.1128/AEM.67.6.2436-2444.2001.
[131]
Matta, H.; Punj, V. Isolation and partial characterization of a thermostable extracellular protease of Bacillus polymyxa B–17. Int. J. Food Microbiol. 1998, 42, 139–145, doi:10.1016/S0168-1605(98)00061-0.
[132]
Zhang, Y.; Porcelli, M.; Cacciapuoti, G.; Ealick, S.E. The crystal structure of 5’-deoxy-5’-methylthioadenosine phosphorylase II from Sulfolobus solfataricus, a thermophilic enzyme stabilized by intramolecular disulfide bonds. J. Mol. Biol. 2006, 357, 252–262, doi:10.1016/j.jmb.2005.12.040.
[133]
Storch, E.M.; Daggett, V.; Atkins, W.M. Engineering out motion: A surface disulfide bond alters the mobility of tryptophan 22 in cytochrome b5 as probed by time-resolved fluorescence and 1H NMR experiments. Biochem. 1999, 38, 5054–5064, doi:10.1021/bi982158q.
[134]
Matthews, B.W.; Nicholson, H.; Becktel, W.J. Enhanced protein thermostability from site-directed mutations that decrease the entropy of unfolding. P. Natl. Acad. Sci. USA 1987, 84, 6663–6667, doi:10.1073/pnas.84.19.6663.
[135]
D’Amico, S.; Claverie, P.; Collins, T.; Georlette, D.; Gratia, E.; Hoyoux, A.; Meuwis, M.A.; Feller, G.; Gerday, C. Molecular basis of cold adaptation. Philos. T. Roy. Soc. B. 2002, 357, 917–925, doi:10.1098/rstb.2002.1105.
[136]
Boehr, D.D.; Dyson, H.J.; Wright, P.E. An NMR perspective on enzyme dynamics. Chem. Rev. 2006, 106, 3055–3079, doi:10.1021/cr050312q.
[137]
Henzler-Wildman, K.; Kern, D. Dynamic personalities of proteins. Nature 2007, 450, 964–972, doi:10.1038/nature06522.
[138]
Tehei, M.; Zaccai, G. Adaptation to high temperatures through macromolecular dynamics by neutron scattering. FEBS J. 2007, 274, 4034–4043, doi:10.1111/j.1742-4658.2007.05953.x.
[139]
Adcock, S.A.; McCammon, J.A. Molecular Dynamics: Survey of methods for simulating the activity of proteins. Chem. Rev. 2006, 106, 1589–1615, doi:10.1021/cr040426m.
[140]
Van Gunsteren, W.F.; Bakowies, D.; Baron, R.; Chandrasekhar, I.; Christen, M.; Daura, X.; Gee, P.; Geerke, D.P.; Glattli, A.; Hunenberger, P.H. Biomolecular modeling: Goals, problems, perspective. Angewandte Chemie International Edition in English 2006, 45, 4064–4092, doi:10.1002/anie.200502655.
[141]
Van Gunsteren, W.F.; Dolenc, J.; Mark, A.E. Molecular simulation as an aid to experimentalists. Curr. Opin. Struc. Biol. 2008, 18, 149–153, doi:10.1016/j.sbi.2007.12.007.
[142]
Pantoliano, M.W.; Whitlow, M.; Wood, J.F.; Dodd, S.W.; Hardman, K.D.; Rollence, M.L.; Bryan, P.N. Large increases in general stability for the subtilisin BPN’ through incremental changes in the free energy of unfolding. Biochem. 1989, 28, 7205–7213, doi:10.1021/bi00444a012.
[143]
Strausberg, S.L.; Alexander, P.A.; Gallagher, D.T.; Gilliland, G.L.; Barnett, B.L.; Bryan, P.N. Directed evolution of a subtilisin with calcium-independent stability. Biotechnology 1995, 13, 669–673.
[144]
Shao, Z.; Zhao, H.; Giver, L.; Arnold, F.H. Random-priming in vitro recombination: An effective tool for directed evolution. Nucleic Acids Res. 1998, 26, 681–683, doi:10.1093/nar/26.2.681.
[145]
Yang, Y.; Jiang, L.; Yang, S.; Zhu, L.; Wu, Y.; Li, Z. A mutant subtilisin E with enhanced thermostability. World J. Microb. Biot. 2000, 16, 249–251, doi:10.1023/A:1008959825832.
[146]
Siguroardottir, A.G.; Arnorsdottir, J.; Thorbjarnardottir, S.H.; Eggertsson, G.; Suhre, K.; Kristjansson, M.M. Characteristics of mutants designed to incorporate a new ion pair into the structure of a cold adapted subtilisin-like serine proteinase. Biochim. Biophys. Acta. , 512–518.
[147]
Narinx, E.; Baise, E.; Gerday, C. Subtilisin from psychrophilic antarctic bacteria: characterization and site-directed mutagenesis of residues possibly involved in the adaptation to cold. Prot. Eng. 1997, 10, 1271–1279, doi:10.1093/protein/10.11.1271.
[148]
Zhao, H.; Arnold, F.H. Directed evolution converts subtilisin E into a functional equivalent of thermitase. Protein Engi. 1999, 12, 47–53.
[149]
He, H.L.; Chen, X.L.; Zhang, X.Y.; Sun, C.Y.; Zou, B.C.; Zhang, Y.Z. Novel Use for the Osmolyte Trimethylamine N-oxide, Retaining the psychrophilic characters of cold–adapted protease Deseasin MCP-01 and simultaneously improving its thermostability. Mar. Biotechnol. 2009, 11, 710–716, doi:10.1007/s10126-009-9185-2.
[150]
Vazquez, S.C.; MacCormack, W.P. Effect of isolation temperature on the characteristics of extracellular proteases produced by Antarctic bacteria. Polar Res. 2002, 21, 63–71, doi:10.1111/j.1751-8369.2002.tb00067.x.
[151]
Nielson, M.H.; Jepsen, S.J.; Outrup, H. Enzymes for lower temperature washing. J. Am. Oil Chem. Soc. 1981, 58, 644–649, doi:10.1007/BF02672384.
[152]
Pawar, R.; Zambare, V.; Barve, Z.; Paratkar, G. Application of protease isolated from Bacillus sp158 in enzymatic cleansing of contact lenses. Biotechnology 2009, 8, 276–280.