A general prediction of ecological theory is that climate change will favor invasive nonindigenous plant species (NIPS) over native species. However, the relative fitness advantage enjoyed by NIPS is often affected by resource limitation and potentially by extreme climatic events such as drought. Genetic constraints may also limit the ability of NIPS to adapt to changing climatic conditions. In this study, we investigated evidence for potential NIPS advantage under climate change in two sympatric perennial stipoid grasses from southeast Australia, the NIPS Nassella neesiana and the native Austrostipa bigeniculata. We compared the growth and reproduction of both species under current and year 2050 drought, temperature and CO 2 regimes in a multifactor outdoor climate simulation experiment, hypothesizing that NIPS advantage would be higher under more favorable growing conditions. We also compared the quantitative variation and heritability of growth traits in populations of both species collected along a 200 km climatic transect. In contrast to our hypothesis we found that the NIPS N. neesiana was less responsive than A. bigeniculata to winter warming but maintained higher reproductive output during spring drought. However, overall tussock expansion was far more rapid in N. neesiana, and so it maintained an overall fitness advantage over A. bigeniculata in all climate regimes. N. neesiana also exhibited similar or lower quantitative variation and growth trait heritability than A. bigeniculata within populations but greater variability among populations, probably reflecting a complex past introduction history. We found some evidence that additional spring warmth increases the impact of drought on reproduction but not that elevated atmospheric CO 2 ameliorates drought severity. Overall, we conclude that NIPS advantage under climate change may be limited by a lack of responsiveness to key climatic drivers, reduced genetic variability in range-edge populations, and complex drought-CO 2 interactions.
References
[1]
Dukes, J.S.; Mooney, H.A. Does global change increase the success of biological invaders? Trends Ecol. Evol. 1999, 11, 135–139, doi:10.1016/S0169-5347(98)01554-7.
[2]
Theoharides, K.A.; Dukes, J.S. Plant invasion across space and time: Factors affecting nonindigenous species success during four stages of invasion. New Phytol. 2007, 176, 256–273, doi:10.1111/j.1469-8137.2007.02207.x.
[3]
Hansen, J.; Sato, M.; Ruedy, R.; Lo, K.; Lea, D.W.; Medina-Elizade, M. Global temperature change. Proc. Natl. Acad. Sci. USA 2006, 103, 14288–14293.
[4]
Hegel, G.C.; Zwiers, F.W.; Braconnot, P.; Gillett, N.P.; Luo, Y.; Marengo Orsini, L.A.; Nicholls, N.; Penner, J.E.; Stott, P.A. Understanding and attributing climate change. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK, New York, NY, USA, 2007.
[5]
Williamson, M. Invasions. Ecography 1999, 22, 5–12, doi:10.1111/j.1600-0587.1999.tb00449.x.
[6]
Marini, L.; Battisti, A.; Bona, E.; Federici, G.; Martini, F.; Pautasso, M.; Hulme, P.E. Alien and native plant life-forms respond differently to human and climate pressures. Glob. Ecol. Biogeogr. 2012, 21, 534–544, doi:10.1111/j.1466-8238.2011.00702.x.
[7]
Hellmann, J.J.; Byers, J.E.; Bierwagen, B.G.; Dukes, J.S. Five potential consequences of climate change for invasive species. Conserv. Biol. 2008, 22, 534–543, doi:10.1111/j.1523-1739.2008.00951.x.
[8]
Sexton, J.P.; McKay, J.K.; Sala, A. Plasticity and genetic diversity may allow saltcedar to invade cold climates in North America. Ecol. Appl. 2002, 12, 1652–1660, doi:10.1890/1051-0761(2002)012[1652:PAGDMA]2.0.CO;2.
[9]
Hulme, P.E. Phenotypic plasticity and plant invasions: Is it all Jack? Funct. Ecol. 2008, 22, 3–7, doi:10.1111/j.1365-2435.2007.01369.x.
[10]
Davidson, A.M.; Jennions, M.; Nicotra, A.B. Do invasive species show higher phenotypic plasticity than native species and, if so, is it adaptive? A meta-analysis. Ecol. Lett. 2011, 14, 419–431, doi:10.1111/j.1461-0248.2011.01596.x.
Bradford, M.A.; Schumacher, H.B.; Catovsky, S.; Eggers, T.; Newingtion, J.E.; Tordoff, G.M. Impacts of invasive plant species on riparian plant assemblages: Interactions with elevated atmospheric carbon dioxide and nitrogen deposition. Oecologia 2007, 152, 791–803, doi:10.1007/s00442-007-0697-z.
[15]
Song, L.; Wu, J.; Li, C.; Li, F.; Peng, S.; Chen, B. Different responses of invasive and native species to elevated CO2 concentration. Acta Oecol. 2009, 35, 128–135, doi:10.1016/j.actao.2008.09.002.
[16]
Manea, A.; Leishman, M.R. Competitive interactions between native and invasive exotic plant species are altered under elevated carbon dioxide. Oecologia 2011, 165, 735–744, doi:10.1007/s00442-010-1765-3.
[17]
Maron, J.L.; Vilà, M.; Bommarco, R.; Elmendorf, S.; Beardsley, P. Rapid evolution of an invasive plant. Ecol. Monogr. 2004, 74, 261–280, doi:10.1890/03-4027.
[18]
Whitney, K.D.; Gabler, C.A. Rapid evolution in introduced species, ‘invasive traits’ and recipient communities: challenges for predicting invasion potential. Divers. Distrib. 2008, 14, 569–580, doi:10.1111/j.1472-4642.2008.00473.x.
[19]
Dlugosch, K.M.; Parker, I.M. Founding events in species invasions: Genetic variation, adaptive evolution, and the role of multiple introductions. Mol. Ecol. 2008, 17, 431–449, doi:10.1111/j.1365-294X.2007.03538.x.
[20]
Schulze, E.-D.; Turner, N.C.; Nicolle, D.; Schumacher, J. Leaf and wood carbon isotope ratios, specific leaf areas and wood growth of Eucalyptus species across a rainfall gradient in Australia. Tree Physiol. 2006, 26, 479–492, doi:10.1093/treephys/26.4.479.
[21]
Maron, J.L.; Elmendorf, S.C.; Vilà, M. Contrasting plant physiological adaptation to climate in the native and introduced range of Hypericum perforatum. Evolution 2007, 61, 1912–1924, doi:10.1111/j.1558-5646.2007.00153.x.
[22]
Etterson, J.R.; Delf, D.E.; Craig, T.P.; Ando, Y.; Ohgushi, T. Parallel patterns of clinal variation in Solidago altissima in its native range in central USA and its invasive range in Japan. Botany 2008, 86, 91–97, doi:10.1139/B07-115.
[23]
Monty, A.; Mahy, G. Clinal differentiation during invasion: Senecio inaequidens (Asteraceae) along altitudinal gradients in Europe. Oecologia 2009, 159, 305–315, doi:10.1007/s00442-008-1228-2.
[24]
Hodgins, K.A.; Rieseberg, L. Genetic differentiation in life-history traits of introduced and native common ragweed (Ambrosia artemisiifolia) populations. J. Evol. Biol. 2011, 24, 2731–2749, doi:10.1111/j.1420-9101.2011.02404.x.
[25]
Baker, H.G. The evolution of weeds. Annu. Rev. Ecol. Syst. 1974, 5, 1–24.
[26]
Vilá, M.; Weiner, J. Are invasive species better competitors than native plant species?—Evidence from pair-wise experiments. Oikos 2004, 105, 229–238, doi:10.1111/j.0030-1299.2004.12682.x.
[27]
Daehler, C.C. Performance comparisons of co-occurring native and alien invasive plants: Implications for conservation and restoration. Annu. Rev. Ecol. Evol. Syst. 2003, 34, 183–211, doi:10.1146/annurev.ecolsys.34.011802.132403.
[28]
Rejmanek, M.; Richardson, D.M. What attributes make some plant species more invasive? Ecology 1996, 77, 1655–1661, doi:10.2307/2265768.
[29]
Byers, J.E. Impact of non-indigenous species on natives enhanced by anthropogenic alteration of selection regimes. Oikos 2002, 97, 449–458, doi:10.1034/j.1600-0706.2002.970316.x.
[30]
Etterson, J.R.; Shaw, R.G. Constraint on adaptive evolution in response to global warming. Science 2001, 294, 151–154, doi:10.1126/science.1063656.
[31]
Blows, M.W.; Chenowith, S.; Hinde, E. Orientation of the genetic variance-covariance matrix and the fitness surface for multiple male sexually-selected traits. Am. Nat. 2004, 163, 329–340, doi:10.1086/381941.
[32]
Ellstrand, N.C.; Schierenbeck, K.A. Hybridization as a stimulus for the evolution of invasiveness in plants. Proc. Nat. Acad. Sci. USA 2000, 97, 7043–7050, doi:10.1073/pnas.97.13.7043.
[33]
Bridle, J.R.; Vines, T.H. Limits to evolution at range margins: When and why does evolution fail? Trends Ecol. Evol. 2007, 22, 140–147, doi:10.1016/j.tree.2006.11.002.
[34]
Phillips, P.C. Maintenance of polygenic variation via a migration-selection balance under uniform selection. Evolution 1996, 50, 1334–1339, doi:10.2307/2410673.
[35]
Lenormand, T. Gene flow and the limits of natural selection. Trends. Ecol. Evol. 2002, 17, 183–189, doi:10.1016/S0169-5347(02)02497-7.
[36]
Colautti, R.I.; Eckert, C.G.; Barret, S.C.H. Evolutionary constraints on adaptive evolution during range expansion in an invasive plant. Proc. Roy. Soc. B 2010, 2077, 1799–1806, doi:10.1098/rspb.2009.2231.
[37]
White, T.A.; Campbell, BD.; Kemp, P.D.; Hunt, C.L. Impacts of extreme climatic events on competition during grassland invasions. Glob. Chang. Biol. 2001, 7, 1–13, doi:10.1046/j.1365-2486.2001.00381.x.
[38]
Gutschick, V.P.; BassiriRad, H. Extreme events as shaping physiology, ecology, and evolution of plants: Toward a unified definition and evaluation of their consequences. New Phytol. 2003, 160, 21–42, doi:10.1046/j.1469-8137.2003.00866.x.
[39]
Yurkonis, K.A.; Meiners, S.J. Drought impacts and recovery are driven by local variation in species turnover. Plant Ecol. 2006, 184, 325–336, doi:10.1007/s11258-005-9076-1.
[40]
Godfree, R.; Lepschi, B.; Reside, A.; Bolger, T.; Robertson, B.; Marshall, D.; Carnegie, M. Multiscale topoedpahic heterogeneity increase resilience and resistance of a dominant grassland species to extreme drought and climate change. Glob. Chang Biol. 2011, 17, 943–958, doi:10.1111/j.1365-2486.2010.02292.x.
[41]
Smith, M.D. An ecological perspective on extreme climatic events: A synthetic definition and framework to guide future research. J. Ecol. 2011, 99, 656–663, doi:10.1111/j.1365-2745.2011.01798.x.
[42]
Godfree, R.C. Extreme climatic events as drivers of ecosystem change. In Diversity of Ecosystems; Ali, M., Ed.; Intech Publishers: Rijeka, Croatia, 2012; pp. 339–366.
[43]
Stampfli, A.; Zieter, M. Plant regeneration directs changes in grassland composition after extreme drought: A 13-year study in southern Switzerland. J. Ecol. 2004, 92, 5668–5676.
[44]
Sheppard, C.S.; Alexander, J.M.; Billeter, R. The invasion of plant communities following extreme weather events under ambient and elevated temperature. Plant Ecol. 2012, 213, 1289–1301, doi:10.1007/s11258-012-0086-5.
[45]
Bell, J.L.; Sloan, L.C.; Snyder, M.A. Regional changes in extreme climatic events: A future climate scenario. J. Clim. 2004, 17, 81–87, doi:10.1175/1520-0442(2004)017<0081:RCIECE>2.0.CO;2.
[46]
Beniston, M.; Stephenson, D.B. Extreme climatic events and their evolution under changing climatic conditions. Glob. Planet. Change 2004, 44, 1–9, doi:10.1016/j.gloplacha.2004.06.001.
[47]
Planton, S.; Déqué, M.; Chauvin, F.; Terray, L. Expected impacts of climate change on extreme climate events. C. R. Geosci. 2008, 340, 564–574, doi:10.1016/j.crte.2008.07.009.
[48]
Climate change in Australia. Available online: http://www.climatechangeinaustralia.gov.au/ (accessed on 22 August 2012).
Barkworth, M.E.; Arriaga, M.O.; Smith, J.F.; Jacobs, S.W.L.; Valdés-Reyna, J.; Bushman, B.S. Molecules and morphology in South American Stipeae (Poaceae). Syst. Bot. 2008, 33, 719–731, doi:10.1600/036364408786500235.
[51]
Everett, J.; Jacobs, S.W.L.; Nairn, L. Poaceae 2. In Flora of Australia 44a; Wilson, A., Ed.; ABRS, Canberra/CSIRO Publishing: Melbourne, Australia, 2009; pp. 64–67.
[52]
Barkworth, M.E.; Torres, M.A. Distribution and diagnostic characters of Nassella (Poaceae: Stipeae). Taxon 2001, 50, 439–468, doi:10.2307/1223891.
[53]
Jacobs, S.W.L.; Everett, J.; Torres, M.A. Nassella tenuissima (Gramineae) recorded from Australia, a potential new weed related to Serrated Tussock. Telopea 1998, 8, 41–44.
[54]
McLaren, D.A.; Stajsic, V.; Iacomis, L. The distribution, impacts and identification of exotic stipoid grasses in Australia. Plant Prot. Q. 2004, 19, 59–66.
[55]
Moore, R.M. South-eastern temperate woodlands and grasslands. In Australian Grasslands; Moore, R.M., Ed.; Australian National University Press: Canberra, Australia, 1973; pp. 169–190.
[56]
Benson, J.S. The native grasslands of the Monaro region: Southern Tablelands of NSW. Cunninghamia 1994, 3, 609–650.
[57]
Kirkpatrick, J.; McDougall, K.; Hyde, M. Australia's Most Threatened Ecosystem: The Southeastern Lowland Native Grasslands; Surry Beatty & Sons: Chipping Norton, NSW, Australia, 1995.
[58]
Lunt, I.D.; Morgan, J.W. Can competition from Themeda triandra inhibit invasion by the perennial exotic grass Nassella neesiana in native grasslands? Plant Prot. Q. 2000, 15, 92–94.
[59]
Gardener, M.R.; Whalley, R.B.D.; Sindel, B.M. Ecology of Nassella neesiana, Chilean needle grass, in pastures on the Northern Tablelands of New South Wale. I. Seed Production and dispersal. Aust. J. Agric. Res. 2003, 54, 613–619, doi:10.1071/AR01075.
[60]
Dyksterhuis, E.J. Axillary cleistogenes in Stipa leucotricha and their role in nature. Ecology 1945, 26, 195–199, doi:10.2307/1930824.
[61]
Brown, W.V. The relation of soil moisture to cleistogamy in Stipa leucotricha. Bot. Gaz. 1952, 113, 438–444.
[62]
Council of Heads of Australasian Herbaria (CHAH). Available online: http://www.chah.gov.au/ (accessed 22 August 2012).
[63]
SILO enhanced climate data bank hosted by the Queensland Climate Change Centre of Excellence. Available online: http://www.longpaddock.qld.gov.au/silo/ (accessed 22 August 2012).
[64]
Falconer, D.S. Introduction to Quantitative Genetics, 2nd ed.; Longman Scientific and Technical, copublished with John Wiley and Sons: New York, NY, USA, 1981; p. 340.
[65]
Baltunis, B.S.; Wu, H.X.; Dungey, H.S.; Mullin, T.J.; Brawner, J.T. Comparisons of genetic parameters and clonal value predictions from clonal trials and seedling base population trials of radiata pine. Tree Genet. Genomes 2009, 5, 269–278, doi:10.1007/s11295-008-0172-y.
[66]
Godfree, R.; Robertson, B.; Bolger, T.; Carnegie, M.; Young, A. An improved hexagon open-top chamber system for stable diurnal and nocturnal warming and atmospheric carbon dioxide enrichment. Glob. Chang Biol. 2011, 17, 439–451, doi:10.1111/j.1365-2486.2010.02276.x.
[67]
Ivkovich, M. Genetic variation of wood properties in Balsam Poplar (Populus balsamifera L.). Silvae Genet. 1996, 45, 2–3.
[68]
Aronson, J.; Kigel, J.; Shmida, A. Reproductive allocation strategies in desert and Mediterranean populations of annual plants grown with and without stress. Oecologia 1993, 93, 336–342, doi:10.1007/BF00317875.
[69]
Bolger, T.P.; Rivelli, A.R.; Garden, D.L. Drought resistance of native and introduced perennial grasses in south-eastern Australia. Aust. J. Agric. Res. 2005, 56, 1261–1267, doi:10.1071/AR05075.
[70]
Sakai, A.K.; Allendorf, F.W.; Holt, J.S.; Lodge, D.M.; Molofsky, J.; With, K.A.; Baughman, S.; Cabin, R.J.; Cohen, J.E.; Ellstrand, N.C.; et al. The population biology of invasive species. Annu. Rev. Ecol. Syst. 2001, 32, 305–332, doi:10.1146/annurev.ecolsys.32.081501.114037.
[71]
Weiner, J.; Thomas, S.C. Size variability and competition in plant monocultures. Oikos 1986, 47, 211–222, doi:10.2307/3566048.
[72]
Wilson, J.B. The effect of initial advantage on the course of plant competition. Oikos 1988, 51, 19–25, doi:10.2307/3565802.
[73]
Wedin, D.; Tilman, D. Competition among grasses along a nitrogen gradient: Initial conditions and mechanisms of competition. Ecol. Monogr. 993, 63, 199–229, doi:10.2307/2937180.
[74]
Bentley, A.R.; Petrovic, T.; Griffiths, S.P.; Burgess, L.W.; Summerell, B.A. Crop pathogens and other Fusarium species associated with Austrostipa aristiglumis. Aust. Plant Pathol. 2007, 36, 434–438, doi:10.1071/AP07047.
[75]
Liu, H.; Stiling, P. Testing the enemy release hypothesis: A review and meta-analysis. Biol. Invasions 2006, 8, 1535–1545, doi:10.1007/s10530-005-5845-y.
[76]
Nicholls, N. The changing nature of Australian droughts. Clim. Change 2004, 63, 323–336, doi:10.1023/B:CLIM.0000018515.46344.6d.
[77]
Cai, W.; Cowan, T. Evidence from impacts of rising temperature on inflows to the Murray-Darling Basin. Geophys. Res. Lett. 2008, 35, L07701.
[78]
Eamus, D. The interaction of rising CO2 and temperatures with water use efficiency. Plant Cell Environ. 1991, 14, 843–852, doi:10.1111/j.1365-3040.1991.tb01447.x.
[79]
Betts, R.A.; Boucher, O.; Collins, M.; Cox, P.M.; Falloon, P.D.; Gedney, N.; Hemming, D.L.; Huntingford, C.; Jones, C.D.; Sexton, D.M.H.; et al. Projected increase in continental runoff due to plant responses to increasing carbon dioxide. Nature 2007, 448, 1037–1042, doi:10.1038/nature06045.
[80]
Leipprand, A.; Gerten, D. Global effects of doubled atmosphere CO2 content on evapotranspiration, soil moisture and runoff under potential natural vegetation. Hydrol. Sci. J. 2006, 51, 171–185, doi:10.1623/hysj.51.1.171.
[81]
Kergoat, L.; Lafont, S.; Douvilee, H.; Berthelot, B.; Dedieu, G.; Planton, S.; Royer, J.-F. Impact of doubled CO2 on global-scale leaf area index and evapotranspiration: Conflicting stomatal conductance and LAI responses. J. Geophys. Res. 2002, 107, 4808.
[82]
Gedney, N.; Cox, P.M.; Betts, R.A.; Boucher, O.; Huntingford, C.; Stott, P.A. Detection of a direct carbon dioxide effect in continental river runoff records. Nature 2006, 439, 835–838, doi:10.1038/nature04504.
[83]
Alkama, R.; Kageyama, M.; Ramstein, G. Relative contributions of climate change, stomatal closure, and leaf area index changes to 20th and 21st century runoff change: A modeling approach using the Organizing Carbon and Hydrology in Dynamic Ecosystems (ORCHIDEE) land surface model. J. Geophys. Res. 2010, 115, D17112, doi:10.1029/2009JD013408.
[84]
Leuzinger, S.; K?rner, C. Rainfall distribution is the main driver of runoff under future CO2-concentration in a temperate deciduous forest. Glob. Chang Biol. 2010, 16, 246–254, doi:10.1111/j.1365-2486.2009.01937.x.
[85]
Murray, S.J.; Foster, P.N.; Prentice, I.C. Future global water resources with respect to climate change and water withdrawals as estimated by a dynamic global vegetation model. J. Hydrol. 2012, 448–449, 14–29.
[86]
Hovenden, M.J.; Wills, K.E.; Vander Schoor, J.K.; Williams, A.L.; Newton, P.C.D. Flowering phenology in a species-rich temperate grassland is sensitive to warming but not elevated CO2. New Phytol. 2008, 178, 815–822, doi:10.1111/j.1469-8137.2008.02419.x.
[87]
Dieleman, W.I.J.; Vicca, S.; Dijkstra, F.A.; Hagedorn, F.; Hovenden, M.J.; Larsen, K.S.; Morgan, J.A.; Volder, A.; Beier, C.; Dukes, J.S.; et al. Simple additive effects are rare: A quantified review of plant biomass and soil process responses to combined manipulations of CO2 and temperature. Glob. Chang. Biol. 2012, 18, 2681–2693, doi:10.1111/j.1365-2486.2012.02745.x.
[88]
Pe?uelas, J.; Gordon, C.; Llorens, L.; Nielsen, T.; Tietema, A.; Beier, C.; Bruna, P.; Emmett, B.; Estiarte, M.; Gorissen, A. Nonintrusive field experiments show different plant responses to warming and drought among sites, seasons, and species in a north-south European Gradient. Ecosystems 2004, 7, 598–612.
[89]
Murphy, B.F.; Timbal, B. A review of recent climate variability and climate change in southeastern Australia. Int. J. Climatol. 2008, 28, 859–879, doi:10.1002/joc.1627.
[90]
Hoffman, A.A.; Blows, M.W. Species borders—Ecological and evolutionary perspectives. Trends Ecol. Evol. 1994, 9, 223–227, doi:10.1016/0169-5347(94)90248-8.
[91]
Arnaud-Haond, S.; Teixeira, S.; Massa, S.I.; Billot, C.; Saenger, P.; Coupland, G.; Duarte, C.M.; Serr?o, E.A. Genetic structure at range edge: Low diversity and high inbreeding in Southeast Asian mangrove (Avicennia marina) populations. Mol. Ecol. 2000, 15, 3515–3525.
[92]
Mandák, B.; Zákravsky, P.; Ko?ínková, D.; Dostál, P.; Pla?ová, I. Low population differentiation and high genetic diversity in the invasive species Carduus acanthoides L. (Asteraceae) within its native range in the Czech Republic. Biol. J. Linn. Soc. Lond. 2009, 98, 596–607, doi:10.1111/j.1095-8312.2009.01304.x.
[93]
Kirk, H.; Paul, J.; Straka, J.; Freeland, J.R. Long distance dispersal and high genetic diversity are implicated in the invasive spread of the common reed, Phragmites australis, in northeastern North America. Am. J. Bot. 2011, 98, 1180–1190.
[94]
Schoen, D.J.; Brown, A.H.D. Intraspecific variation in population gene diversity and effective population size correlates with the mating system of plants. Proc. Nat. Acad. Sci. USA 1991, 88, 4494–4497, doi:10.1073/pnas.88.10.4494.
[95]
Wright, S.I.; Ness, R.W.; Foxe, J.P.; Barrett, S.C.H. Genomic consequences of outcrossing and selfing in plants. Int. J. Plant Sci. 2008, 169, 105–118, doi:10.1086/523366.
[96]
Bossdorf, O.; Auge, H.; Lafuma, L.; Rogers, W.E.; Siemann, E.; Prati, D. Phenotypic and genetic differentiation between native and introduced plant populations. Oecologia 2005, 144, 1–11, doi:10.1007/s00442-005-0070-z.
[97]
Chapin, F.S.; Autumn, K.; Pugnaire, F. Evolution of suites of traits in response to environmental stress. Am. Nat. 1993, 142, 78–92.
[98]
Vitasse, Y.; Delzon, S.; Bresson, C.C.; Michalet, R.; Kremer, A. Altitudinal differentiation in growth and phenology among populations of temperate-zone tree species growing in a common garden. Can. J. For. Res. 2009, 39, 1259–1269, doi:10.1139/X09-054.
[99]
Liancourt, P.; Tielb?rger, K. Competition and a short growing season lead to ecotypic differentiation at the two extremes of the ecological range. Funct. Ecol. 2009, 23, 397–404, doi:10.1111/j.1365-2435.2008.01497.x.
[100]
He, W.M.; Thelen, G.C.; Ridenour, W.M.; Callaway, R.M. Is there a risk to living large? Large size correlates with reduced growth when stressed for knapweed populations. Biol. Invasions 2010, 12, 3591–3598, doi:10.1007/s10530-010-9753-4.
[101]
Ebeling, S.K.; St?cklin, J.; Hensen, I.; Auge, H. Multiple garden experiments suggest lack of local adaptation in an invasive ornamental plant. J. Plant Ecol. 2011, 4, 209–220, doi:10.1093/jpe/rtr007.
[102]
Kawakami, T.; Morgan, T.J.; Nippert, J.B.; Ocheltree, T.W.; Keith, R.; Dhakal, P.; Ungerer, M.C. Natural selection drives clinal life history patterns in the perennial sunflower species, Helianthus maximiliani. Mol. Ecol. 2011, 20, 2318–2328, doi:10.1111/j.1365-294X.2011.05105.x.