Almost all transfection protocols for mammalian cells use a drug resistance gene for the selection of transfected cells. However, it always requires the characterization of each isolated clone regarding transgene expression, which is time-consuming and labor-intensive. In the current study, we developed a novel method to selectively isolate clones with high transgene expression without drug selection. Porcine embryonic fibroblasts were transfected with pCEIEnd, an expression vector that simultaneously expresses enhanced green fluorescent protein (EGFP) and endo-b-galactosidase C(EndoGalC; an enzyme capable of digesting cell surface a-Gal epitope) upon transfection. After transfection, the surviving cells were briefly treated with IB4SAP (a-Gal epitope-specific BS-I-B 4 lectin conjugated with a toxin saporin). The treated cells were then allowed to grow in normal medium, during which only cells strongly expressing EndoGalC and EGFP would survive because of the absence of a-Gal epitopes on their cell surface. Almost all the surviving colonies after IB4SAP treatment were in fact negative for BS-I-B 4 staining, and also strongly expressed EGFP. This system would be particularly valuable for researchers who wish to perform large-scale production of therapeutically important recombinant proteins.
References
[1]
Vaughan, H.A.; Loveland, B.E.; Sandrin, M.S. Gal(α1-3)Gal is the major xenoepitope expressed on pig endothelial cells recognized by naturally occurring cytotoxic human antibodies. Transplantation 1994, 58, 879–882, doi:10.1097/00007890-199410270-00003.
[2]
Cascalho, M.; Platt, J.L. The immunological barrier to xenotransplantation. Immunity 2001, 14, 437–446, doi:10.1016/S1074-7613(01)00124-8.
[3]
Galili, U. The α-gal epitope (Galα1-3Galβ1-4GlcNAc-R) in xenotransplantation. Biochimie 2001, 83, 557–563, doi:10.1016/S0300-9084(01)01294-9.
[4]
Cooper, D.K.C.; Gollackner, B.; Sachs, D.H. Will the pig solve the transplantation backlog? Ann. Rev. Med. 2002, 53, 133–147, doi:10.1146/annurev.med.53.082901.103900.
[5]
Cooper, D.K.C.; Koren, E.; Oriol, R. Oligosaccharides and discordant xenotransplantation. Immunol. Rev. 1994, 141, 31–58, doi:10.1111/j.1600-065X.1994.tb00871.x.
[6]
Ogawa, H.; Muramatsu, H.; Kobayashi, T.; Morozumi, K.; Yokoyama, I.; Kurosawa, N.; Nakao, A.; Muramatsu, T. Molecular cloning of endo-β-galactosidase C and its application in removing α-galactosyl xenoantigen from blood vessels in the pig. J. Biol. Chem. 2000, 275, 19368–19374.
[7]
Yazaki, S.; Iwamoto, M.; Onishi, A.; Miwa, Y.; Suzuki, S.; Fuchimoto, D.; Sembon, S.; Furusawa, T.; Hashimoto, M.; Oishi, T.; et al. Successful cross-breeding of cloned pigs expressing endo-beta-galactosidase C and human decay accelerating factor. Xenotransplantation 2009, 16, 511–521, doi:10.1111/j.1399-3089.2009.00549.x.
[8]
Akasaka, E.; Watanabe, S.; Himaki, T.; Ohtsuka, M.; Yoshida, M.; Miyoshi, K.; Sato, M. Enrichment of xenograft-competent genetically modified pig cells using a targeted toxin, isolectin BS-I-B4 conjugate. Xenotransplantation 2010, 17, 81–89, doi:10.1111/j.1399-3089.2010.00568.x.
[9]
Himaki, T.; Watanabe, S.; Chi, H.; Yoshida, M.; Miyoshi, K.; Sato, M. Production of genetically modified porcine blastocysts by somatic cell nuclear transfer: Preliminary results toward production of xenograft-competent miniature pigs. J. Reprod. Dev. 2010, 56, 630–638, doi:10.1262/jrd.09-227A.
[10]
Stirpe, F.; Barbieri, L.; Battelli, M.G.; Soria, M.; Lappi, D.A. Ribosome-inactivating proteins from plants: present status and future prospects. Biotechnology 1992, 10, 405–412.
[11]
Fussenegger, M.; Mazur, X.; Bailey, J.E. pTRIDENT, a novel vector family for tricistronic gene expression in mammalian cells. Biotechnol. Bioeng. 1998, 57, 1–10, doi:10.1002/(SICI)1097-0290(19980105)57:1<1::AID-BIT1>3.0.CO;2-M.
[12]
Fussenegger, M.; Schlatter, S.; D?twyler, D.; Mazur, X.; Bailey, J.E. Controlled proliferation by multigene metabolic engineering enhances the productivity of Chinese hamster ovary cells. Nat. Biotechnol. 1998, 16, 468–472.
[13]
Douin, V.; Bornes, S.; Creancier, L.; Rochaix, P.; Favre1, G.; Prats, A.-C.; Couderc, B. Use and comparison of different internal ribosomal entry sites (IRES) in tricistronic retroviral vectors. BMC Biotechnol. 2004, 4, 16.
[14]
Sato, M.; Ohtsuka, M.; Miura, H.; Miyoshi, K.; Watanabe, S. Determination of the optimal concentration of several selective drugs useful for generating multi-transgenic porcine embryonic fibroblasts. Reprod. Dom. Anim. 2012, 47, 759–765, doi:10.1111/j.1439-0531.2011.01964.x.
[15]
Larsen, R.D.; Rivera-Marrero, C.A.; Ernst, L.K.; Cummings, R.D.; Lowe, J.B. Frameshift and nonsense mutations in a human genomic sequence homologous to a murine UDP-Gal:β-D-Gal(1,4)-D-GlcNAc α(1,3)-galactosyltransferase cDNA. J. Biol. Chem. 1990, 265, 7055–7061.
[16]
Watanabe, S.; Misawa, M.; Matsuzaki, T.; Sakurai, T.; Muramatsu, T.; Yokomine, T.; Sato, M. Production and characterization of transgenic mice systemically expressing Endo-β-galactosidase C. Glycobiology 2008, 18, 9–19.
[17]
Watanabe, S.; Misawa, M.; Matsuzaki, T.; Sakurai, T.; Muramatsu, T.; Sato, M. A novel glycosylation signal regulates transforming growth factor β receptors as evidenced by endo-β-galactosidase C expression in rodent cells. Glycobiology 2011, 21, 482–492, doi:10.1093/glycob/cwq186.
[18]
Sato, M.; Chi, H.; Miyoshi, K. Targeted toxin as a useful reagent for enrichment of α-Gal epitope-negative cells used for somatic cell nuclear transfer in pigs. In InTech Open Book Chapter: Xenotransplantation; Miyagawa, S., Ed.; InTech: Rijeka, Croatia, 2012.
[19]
Niwa, H.; Yamamura, K.; Miyazaki, J. Efficient selection for high-expression transformants with a novel eukaryotic vector. Gene 1991, 108, 193–200, doi:10.1016/0378-1119(91)90434-D.
[20]
Sato, M.; Ishikawa, A.; Kimura, M. Direct injection of foreign DNA into mouse testis as a possible in vivo gene transfer system via epididymal spermatozoa. Mol. Reprod. Dev. 2002, 61, 49–56, doi:10.1002/mrd.1130.
[21]
Nakayama, A.; Sato, M.; Shinohara, M.; Matsubara, S.; Yokomine, T.; Akasaka, E.; Yoshida, M.; Takao, S. Efficient transfection of primarily cultured porcine embryonic fibroblasts using the Amaxa nucleofection system ?. Cloning Stem Cells 2007, 9, 523–534, doi:10.1089/clo.2007.0021.