Cyanobacteria and lichens living under sandstone surfaces in the McMurdo Dry Valleys require snow for moisture. Snow accumulated beyond a thin layer, however, is counterproductive, interfering with rock insolation, snow melting, and photosynthetic access to light. With this in mind, the facts that rock slope and direction control colonization, and that climate change results in regional extinctions, can be explained. Vertical cliffs, which lack snow cover and are perpetually dry, are devoid of organisms. Boulder tops and edges can trap snow, but gravity and wind prevent excessive buildup. There, the organisms flourish. In places where snow-thinning cannot occur and snow drifts collect, rocks may contain living or dead communities. In light of these observations, the possibility of finding extraterrestrial endolithic communities on Mars cannot be eliminated.
References
[1]
Friedmann, E.I.; McKay, C.P.; Nienow, J.A. The cryptoendolithic microbial environment in the Ross Desert of Antarctica: Satellite-transmitted continous nanoclimate data, 1984–1986. Polar Biol. 1987, 7, 273–287, doi:10.1007/BF00443945.
[2]
Friedmann, E.I.; Ocampo, R. Endolithic blue-green algae in the dry valleys: Primary producers in the Antarctic desert ecosystem. Science 1976, 193, 1247–1249.
[3]
Friedmann, E.I. Endolithic microorganisms in the Antarctic cold desert. Science 1982, 215, 1045–1053.
[4]
Friedmann, E.I. Melting snow in the dry valleys is a source of water for endolithic microorganisms. Antarctic J. 1978, 13, 162–163.
[5]
McKay, C.P.; Friedmann, E.I. The cryptoendolithic microbial environment in the Antarctica cold desert: Temperature variations in nature. Polar Biol. 1985, 4, 19–25, doi:10.1007/BF00286813.
[6]
Nienow, J.A.; McKay, C.P.; Friedmann, E.I. The cryptoendolithic microbial environment in the Ross Desert of Antarctica: light in the photosynthetically active region. Microb. Ecol. 1988, 16, 271–289.
[7]
Friedmann, E.I.; Weed, R. Microbial trace-fossil formation, biogenous, and abiotic weathering in the Antarctic cold desert. Science 1987, 236, 703–705.
[8]
Friedmann, E.I.; Druk, A.Y.; McKay, C.P. Limits of life and microbial extinction in the antarctic desert. Antarctic J. 1994, 29, 176–179.
[9]
Friedmann, E.I. The Antarctic cold desert and the search for traces of life on Mars. Adv. Space Res. 1986, 6, 265–268, doi:10.1016/0273-1177(86)90095-5.
[10]
McKay, C.P.; Friedmann, E.I.; Wharton, R.A.; Davies, W.L. History of water on Mars: A biological perspective. Adv. Space Res. 1992, 12, 231–238.
[11]
Sun, H.J.; Friedmann, E.I. Growth on geological time scales in the Antarctic cryptoendolithic microbial community. Geomicrobiol. J. 1999, 16, 193–202, doi:10.1080/014904599270686.
[12]
Lobitz, B.; Wood, B.L.; Averner, M.M.; McKay, C.P. Use of spacecraft data to derive regions on Mars where liquid water would be stable. Proc. Natl. Acad. Sci. USA. 2001, 98, 2132–2137, doi:10.1073/pnas.031581098.
[13]
Dong, H.; Rech, J.A.; Jiang, H.; Sun, H.; Buck, B.J. Endolithic cyanobacteria in soil gypsum: Occurrences in Atacama (Chile), Mojave (USA), and Al-Jafr Basin (Jordan) Deserts. J. Geophys. Res. 2007, 112, G02030.