Lake Vanda is a perennially ice-covered, closed-basin lake in the McMurdo Dry Valleys, Antarctica. Laminated photosynthetic microbial mats cover the floor of the lake from below the ice cover to >40 m depth. In recent decades, the water level of Lake Vanda has been rising, creating a “natural experiment” on development of mat communities on newly flooded substrates and the response of deeper mats to declining irradiance. Mats in recently flooded depths accumulate one lamina (~0.3 mm) per year and accrue ~0.18 μg chlorophyll-a cm ?2 y ?1. As they increase in thickness, vertical zonation becomes evident, with the upper 2-4 laminae forming an orange-brown zone, rich in myxoxanthophyll and dominated by intertwined Leptolyngbya trichomes. Below this, up to six phycobilin-rich green/pink-pigmented laminae form a subsurface zone, inhabited by Leptolyngbya, Oscillatoria and Phormidium morphotypes. Laminae continued to increase in thickness for several years after burial, and PAM fluorometry indicated photosynthetic potential in all pigmented laminae. At depths that have been submerged for >40 years, mats showed similar internal zonation and formed complex pinnacle structures that were only beginning to appear in shallower mats. Chlorophyll-a did not change over time and these mats appear to represent resource-limited “climax” communities. Acclimation of microbial mats to changing environmental conditions is a slow process, and our data show how legacy effects of past change persist into the modern community structure.
References
[1]
Kühl, M.; Fenchel, T. Bio-optical Characteristics and the Vertical Distribution of Photosynthetic Pigments and Photosynthesis in an Artificial Cyanobacterial Mat. Microbial. Ecol. 2000, 40, 94–103.
[2]
Gerdes, G. Gerdes, G. What are microbial mats? In Microbial Mats: Modern and Ancient Microorganisms in Stratified Systems; Seckbach, J., Oren, A., Eds.; Springer Science: Dordrecht, Netherlands, 2010; pp. 3–25.
[3]
Wharton, R.A., Jr.; Parker, B.C.; Simmons, G.M., Jr. Distribution, species composition and morphology of algal mats in Antarctic dry valley lakes. Phycologia 1983, 22, 355–365, doi:10.2216/i0031-8884-22-4-355.1.
[4]
Wharton, R.A., Jr. Stromatolitic mats in Antarctic lakes. In Phanerozoic Stromatolites II; Bertrand-Sarfati, J., Monty, C., Eds.; Kluwer: Dordrecht, Netherlands, 1994; pp. 53–70.
[5]
Hawes, I.; Moorhead, D.; Sutherland, D.; Schmeling, J.; Schwarz, A.-M. Benthic primary production in two perennially ice-covered Antarctic Lakes: Patterns of biomass accumulation with a model of community metabolism. Ant. Sci. 2001, 13, 18–27.
[6]
Moorhead, D.; Schmeling, J.; Hawes, I. Contributions of benthic microbial mats to net primary production in Lake Hoare, Antarctica. Ant. Sci. 2005, 17, 33–45, doi:10.1017/S0954102005002403.
[7]
Quesada, A.; Fernández-Valiente, E.; Hawes, I.; Howard-Williams, C. Benthic primary production in polar lakes and rivers. In Polar Lakes and Rivers—Arctic and Antarctic Aquatic Ecosystems; Vincent, W.F., Laybourn-Parry, J., Eds.; Oxford University Press: Oxford, UK, 2008; pp. 179–196.
[8]
Wharton, R.A., Jr.; McKay, C.P.; Clow, G.D.; Andersen, D.T.; Simmons, G.M., Jr.; Love, F.G. Changes in ice cover thickness and lake level of Lake Hoare, Antarctica: Implications for local climate change. J. Geophys. Res. 1992, 97, 3503–3513, doi:10.1029/91JC03106.
[9]
Lyons, W.B.; Laybourn-Parry, J.; Welch, K.A.; Priscu, J.C. Antarctic lake systems and climate change. In Trends in Antarctic Terrestrial and Limnetic Ecosystems; Bergstrom, D.M., Ed.; Springer: Dordrecht, The Netherlands, 2006; pp. 273–295.
[10]
Chinn, T.J. Physical hydrology of the Dry Valley lakes. In Antarctic Research Series: Physical and Biogeochemical Processes in Antarctic Lakes; Green, W.J., Friedmann, E.I., Eds.; American Geophysical Union: Washington, DC, USA, 1993; pp. 1–51.
[11]
Hawes, I.; Sumner, D.Y.; Andersen, D.T.; Mackey, T.J. Legacies of recent environmental change in benthic communities of Lake Joyce, a perennially ice covered Antarctic lake. Geobioloy 2011, 9, 397–410.
[12]
Spigel, R.H.; Priscu, J.C. Physical limnology of the McMurdo Dry Valley lakes. In Ecosystem Dynamics in a Polar Desert: The McMurdo Dry Valleys, Antarctica; Priscu, J.C., Ed.; American Geophysical Union: Washington, DC, USA, 1998; pp. 153–189.
[13]
Howard-Williams, C.; Schwarz, A.-M.; Hawes, I. Optical properties of the McMurdo Dry Valley Lakes, Antarctica. In Ecosystem Dynamics in a Polar Desert: The McMurdo Dry Valleys, Antarctica; Priscu, J.C., Ed.; American Geophysical Union: Washington, DC, USA, 1998; pp. 189–205.
[14]
Hawes, I.; Schwarz, A.-M. Absorption and utilization of low irradiance by cyanobacterial mats in two ice-covered Antarctic lakes. J. Phycol. 2001, 37, 5–15, doi:10.1046/j.1529-8817.1999.014012005.x.
[15]
Armitage, K.B.; House, H.B. A limnological reconnaissance in the area of McMurdo Sound, Antarctica. Limnol. Oceanogr. 1962, 7, 36–41, doi:10.4319/lo.1962.7.1.0036.
[16]
Vincent, W.F.; Vincent, C.L. Factors controlling phytoplankton production in Lake Vanda (728S). Can. J. Fish. Aq. Sci. 1982, 39, 1602–1609, doi:10.1139/f82-216.
[17]
Parker, B.C.; Simmons, G.M.; Seaburg, K.G.; Cathey, D.D.; Allnutt, F.C.T. Comparative ecology of plankton communities in seven Antarctic oasis lakes. J. Plankton Res. 1982, 4, 271–286, doi:10.1093/plankt/4.2.271.
[18]
Priscu, J.C. Phytoplankton nutrient deficiency in lakes of the McMurdo dry valleys, Antarctica. Freshwater Biol. 1995, 34, 215–227, doi:10.1111/j.1365-2427.1995.tb00882.x.
[19]
Burnett, L.; Moorhead, D.; Hawes, I.; Howard-Williams, C. Environmental Factors Associated with Deep Chlorophyll Maxima in Dry Valley Lakes, South Victoria Land, Antarctica. Arctic Ant. Alpine Res. 2006, 38, 179–189, doi:10.1657/1523-0430(2006)38[179:EFAWDC]2.0.CO;2.
[20]
Vincent, W.F.; James, M.R. Biodiversity in extreme environments: Lakes, pools and streams of the Ross Sea sector, Antarctica. Biodiv. Cons. 1996, 5, 1451–1471, doi:10.1007/BF00051987.
[21]
Love, F.G.; Simmons, G.M.; Parker, B.C.; Wharton, R.A.; Seaburg, K.G. Modern conophyton-like microbial mats discovered in Lake Vanda, Antarctica. Geomicrobiol. J. 1983, 3, 33–48, doi:10.1080/01490458309377782.
[22]
Hawes, I.; Schwarz, A.-M. Photosynthesis in an extreme shade habitat: Benthic microbial mats from Lake Hoare, Antarctica. J. Phycol. 1999, 35, 448–459.
[23]
Jungblut, A.D.; Wood, S.A.; Hawes, I.; Webster-Brown, J.; Harris, C. The Pyramid Trough Wetland: Environmental and biological diversity in a newly created Antarctic protected area. FEMS Microbial. Ecol. 2012, 82, 356–366, doi:10.1111/j.1574-6941.2012.01380.x.
[24]
Sutherland, D.L.; Hawes, I. Annual growth layers as proxies of past growth conditions for benthic microbial mats in a perennially ice-covered Antarctic lake. FEMS Microbial. Ecol. 2009, 67, 279–292, doi:10.1111/j.1574-6941.2008.00621.x.
[25]
Marker, A.F.; Crowther, C.A.; Gunn, R.J.M. Methanol and acetone as solvents for estimation chlorophyll-a and phaeopigments by spectrophotomery. Ergebn. Limnol. 1980, 14, 52–69.
[26]
Zapata, M.; Rodriguez, F.; Garrido, J.L. Separation of chlorophylls and carotenoids from marine phytoplankton: A new HPLC method using reversed phase C8 column and pyridine-containing mobile phases. Mar. Ecol. Prog. Ser. 2000, 195, 29–45, doi:10.3354/meps195029.
[27]
Schreiber, U. Pulse-amplitude (PAM) fluorometry and saturation pulse method. In Chlorophyll Fluorescence: A Signature of Photosynthesis; Papageorgiou, G., Govindjee, Eds.; Kluwer: Dordrecht, Netherlands, 2004; pp. 279–319.
[28]
Vopel, K.; Hawes, I. Photosynthetic performance of benthic microbial mats in Lake Hoare, Antarctica. Limnol. Oceanogr. 2006, 51, 1801–1812, doi:10.4319/lo.2006.51.4.1801.
[29]
Revsbech, N.P. An oxygen microelectrode with a guard cathode. Limnol. Oceanog. 1989, 34, 474–478, doi:10.4319/lo.1989.34.2.0474.
[30]
des Marais, D.J. Microbial mats and the early evolution of life. Trends Ecol. Evol. 1990, 5, 140–144, doi:10.1016/0169-5347(90)90219-4.
[31]
Doran, P.T.; McKay, C.P.; Fountain, A.G.; Nylen, T.; McKnight, D.M.; Jaros, C.; Barrett, J.E. Hydrologic response to extreme warm and cold summers in McMurdo Dry Valleys, east Antarctica. Ant. Sci. 2008, 20, 499–509.
[32]
Jones-Lee, A.; Lee, G.F. The relationship between phosphorus load and eutrophication response in Lake Vanda. Ant. Res. Ser. 1993, 59, 197–214, doi:10.1029/AR059p0197.
[33]
Schreiber, U.; Klughammer, C.; Kolbowski, J. Assessment of wavelength-dependent parameters of photosynthetic electron transport with a new type of multi-color PAM chlorophyll fluorometer. Photosynth. Res. 2012, doi:10.1007/s11120-012-9758-1.
Pearl, H.W.; Pinckney, J.L. A mini-review of microbial consortia: Their roles in aquatic production and biogeochemical cycling. Microbial. Ecol. 1996, 31, 225–247.
[36]
Revsbech, N.P.; J?rgensen, B.J.; Blackburn, T.H. Microelectrode studies of the photosynthesis and O2, H2S and pH profiles of a microbial mat. Limnol. Oceanogr. 1983, 28, 1062–1074, doi:10.4319/lo.1983.28.6.1062.
[37]
Vincent, W.F.; Castenholz, R.W.; Downes, M.T.; Howard-Williams, C. Antarctic cyanobacteria: Light, nutrients and photosynthesis in the microbial mat environment. J. Phycol. 1993, 29, 745–755.
[38]
Jungblut, A.D.; Neilan, B.A. Cyanobacteria mats of the meltwater ponds on the McMurdo Ice Shelf (Antarctica). In Microbial Mats: Modern and Ancient Microorganisms in Stratified Systems; Seckbach, J., Oren, A., Eds.; Springer Science: Dordrecht, The Netherlands, 2010; pp. 499–514.
[39]
J?rgensen, B.; Cohen, Y.; Des Marais, D. Photosynthetic action spectra and adaptation to spectral light distribution in a benthic cyanobacterial mats. Appl. Env. Microbiol. 1987, 53, 879–886.
[40]
Bonilla, S.; Villeneuve, V.; Vincent, W.F. Benthic and planktonic algal communities in a high Arctic lake: Pigment structure and contrasting responses to nutrient enrichment. J. Phycol. 2005, 41, 1120–1130, doi:10.1111/j.1529-8817.2005.00154.x.
[41]
Varin, T.; Lovejoy, C.; Jungblut, A.D.; Vincent, W.F.; Corbeil, J. Metagenomic profiling of Arctic microbial mat communities as nutrient scavenging and recycling systems. Limnol. Oceanogr. 2010, 55, 1901–1911, doi:10.4319/lo.2010.55.5.1901.