全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Petrov-Galerkin approximation for advective-diffusive heat transfer in saturated porous media

Keywords: Porous Media , Mixture Theory , Computational Heat Transfer , Finite Elements , Petrov-Galerkin Formulation

Full-Text   Cite this paper   Add to My Lib

Abstract:

This article studies the heat transport in a flow through a saturated rigid porous medium. The mechanical model is based on the Continuum Theory of Mixtures which considers the fluid and the porous matrix as overlapping continuous constituents of a binary mixture. A Petrov-Galerkin formulation is employed to approximate the resulting system of partial differential equations, overcoming the classical Galerkin method limitation in dealing with advective-dominated flows. The employed method is built in order to remain stable and accurate even for very high advective-dominated flows. Taking advantage of an appropriated upwind strategy, the applied finite element method proved to generate accurate approximations even for very high Péclet regime. Some two-dimensional simulations of the advective-diffusive heat transfer in a flow through a porous flat channel employing lagrangean bilinear and serendipity biquadratic elements have been performed attesting the reliability of the employed Petrov-Galerkin formulation as well as the poor performance of Galerkin one even when mesh refining is considered.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133