|
Transcriptome and proteome analysis of tyrosine kinase inhibitor treated canine mast cell tumour cells identifies potentially kit signaling-dependent genesKeywords: KIT, Mast cell tumour, Dog, 2D-DIGE, MALDI, Mastocytosis, Tyrosine kinase inhibition Abstract: Transcriptome analysis of the canine mast cell tumour cell line C2 treated for up to 72 hours with the tyrosine kinase inhibitor masitinib identified significant changes in the expression levels of approximately 3500 genes or 16% of the canine genome. Approximately 40% of these genes had increased mRNA expression levels including genes associated with the pro-proliferative pathways of B- and T-cell receptors, chemokine receptors, steroid hormone receptors and EPO-, RAS and MAP kinase signaling. Proteome analysis of C2 cells treated for 72 hours identified 24 proteins with changed expression levels, most of which being involved in gene transcription, e.g. EIA3, EIA4, TARDBP, protein folding, e.g. HSP90, UCHL3, PDIA3 and protection from oxidative stress, GSTT3, SELENBP1.Transcriptome and proteome analysis of neoplastic canine mast cells treated with masitinib confirmed the strong important and complex role of KIT in these cells. Approximately 16% of the total canine genome and thus the majority of the active genes were significantly transcriptionally regulated. Most of these changes were associated with reduced proliferation and metabolism of treated cells. Interestingly, several pro-proliferative pathways were up-regulated, which may represent attempts of masitinib treated cells to activate alternative pro-proliferative pathways. These pathways may contain hypothetical targets for a combination therapy with masitinib to further improve its therapeutic effect.Canine mast cell tumours (MCT) are currently treated with one or a combination of four different therapeutic approaches: surgical, radiation, classical chemotherapy and the recently introduced tyrosine kinase inhibitors (TKI) [1-3]. The latter mainly act by inhibiting the stem cell factor receptor KIT, the activation of which is one of the most important proliferation stimuli of normal and neoplastic mast cells [1,4].KIT is constitutively expressed on normal and neoplastic canine mast cells [5]. Due to its centra
|