|
BMC Systems Biology 2009
Identifying disease-specific genes based on their topological significance in protein networksAbstract: In this paper we describe novel computational methodology capable of predicting key regulatory genes and proteins in disease- and condition-specific biological networks. The algorithm builds shortest path network connecting condition-specific genes (e.g. differentially expressed genes) using global database of protein interactions from MetaCore. We evaluate the number of all paths traversing each node in the shortest path network in relation to the total number of paths going via the same node in the global network. Using these numbers and the relative size of the initial data set, we determine the statistical significance of the network connectivity provided through each node. We applied this method to gene expression data from psoriasis patients and identified many confirmed biological targets of psoriasis and suggested several new targets. Using predicted regulatory nodes we were able to reconstruct disease pathways that are in excellent agreement with the current knowledge on the pathogenesis of psoriasis.The systematic and automated approach described in this paper is readily applicable to uncovering high-quality therapeutic targets, and holds great promise for developing network-based combinational treatment strategies for a wide range of diseases.While the utility of systems biology tools and approaches are increasing within scientific research, several fundamental challenges have limited their wide-spread adoption in both the basic and translational sciences. The identification of truly relevant networks that are causatively associated with the phenotype of interest is paramount to the field of systems biology [1-3]. Beyond the identification of an integrated network of interest, further analysis of the system is required to identify key target nodes that may represent novel therapeutic targets, or targets of the existing pharmacopeia. Beyond discovery, it is equally important to begin to consider how our expanding knowledge of molecular interactions may be
|