全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Identification of neutral biochemical network models from time series data

DOI: 10.1186/1752-0509-3-47

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this report, we propose a method for the identification of admissible parameter sets of canonical S-systems from biological time series. The method is based on a Monte Carlo process that is combined with an improved version of our previous parameter optimization algorithm. The method maps the parameter space into the network space, which characterizes the connectivity among components, by creating an ensemble of decoupled S-system models that imitate the dynamical behavior of the time series with sufficient accuracy. The concept of sloppiness is revisited in the context of these S-system models with an exploration not only of different parameter sets that produce similar dynamical behaviors but also different network topologies that yield dynamical similarity.The proposed parameter estimation methodology was applied to actual time series data from the glycolytic pathway of the bacterium Lactococcus lactis and led to ensembles of models with different network topologies. In parallel, the parameter optimization algorithm was applied to the same dynamical data upon imposing a pre-specified network topology derived from prior biological knowledge, and the results from both strategies were compared. The results suggest that the proposed method may serve as a powerful exploration tool for testing hypotheses and the design of new experiments.Mathematical models in modern molecular biology have become attractive as compactors of the massive amounts of multidimensional data produced by high-throughput techniques, thus following similar ideas that previously led from reductionism to quantitative inroads into physiology and ecology. In the smaller-dimensional world described by the model structure and its parameters, new experiments are easier to conceive, hypotheses can be tested with greater clarity, and knowledge can be extended with inexpensive computational effort [1].Generally, mathematical models are implemented with a set of parameters, which give them the flexibili

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133