全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
BMC Biology  2005 

Vertical distribution of zooplankton: density dependence and evidence for an ideal free distribution with costs

DOI: 10.1186/1741-7007-3-10

Full-Text   Cite this paper   Add to My Lib

Abstract:

Experiments were performed in large, indoor mesocosms (Plankton Towers) with a temperature gradient of 10°C and a deep-water algal maximum established below the thermocline. As expected, Daphnia aggregated at the interface between the two different habitats when their density was low. The distribution spread asymmetrically towards the algal maximum when the density increased until 80 % of the population dwelled in the cool, food-rich layers at high densities. Small individuals stayed higher in the water column than large ones, which conformed with the model for unequal competitors.The Daphnia distribution mimics the predictions of an IFD with costs model. This concept is useful for the analysis of zooplankton distributions under a large suite of environmental conditions shaping habitat suitability. Fish predation causing diel vertical migrations can be incorporated as additional costs. This is important as the vertical location of grazing zooplankton in a lake affects phytoplankton production and species composition, i.e. ecosystem function.The water column in a stratified lake provides vertical gradients of habitat qualities for zooplankton. Surface layers (epilimnion) and deep layers (hypolimnion) separated by a strong temperature gradient (thermocline) differ very much with respect to temperature, light, food availability and predation risk. Although zooplankton are defined as "floating" in the water column, their populations show distinct horizontal and vertical distribution patterns [1]. At least the vertical distribution is the result of active habitat choice. Diel vertical migration is a striking example of habitat shift in response to changing suitability. Large zooplankton leave the warm, lighted and often food-rich epilimnion during the day to dwell in the cold, dark hypolimnion where food may be of low quantity and poor quality, in order to avoid predation by visually hunting predators (fish). They return to the surface layers at night when the predation

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133