全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Land  2013 

Variations in Atmospheric CO2 Mixing Ratios across a Boston, MA Urban to Rural Gradient

DOI: 10.3390/land2030304

Keywords: CO2, emissions, urban, gradient, land cover

Full-Text   Cite this paper   Add to My Lib

Abstract:

Urban areas are directly or indirectly responsible for the majority of anthropogenic CO 2 emissions. In this study, we characterize observed atmospheric CO 2 mixing ratios and estimated CO 2 fluxes at three sites across an urban-to-rural gradient in Boston, MA, USA. CO 2 is a well-mixed greenhouse gas, but we found significant differences across this gradient in how, where, and when it was exchanged. Total anthropogenic emissions were estimated from an emissions inventory and ranged from 1.5 to 37.3 mg·C·ha ?1·yr ?1 between rural Harvard Forest and urban Boston. Despite this large increase in anthropogenic emissions, the mean annual difference in atmospheric CO 2 between sites was approximately 5% (20.6 ± 0.4 ppm). The influence of vegetation was also visible across the gradient. Green-up occurred near day of year 126, 136, and 141 in Boston, Worcester and Harvard Forest, respectively, highlighting differences in growing season length. In Boston, gross primary production—estimated by scaling productivity by canopy cover—was ~75% lower than at Harvard Forest, yet still constituted a significant local flux of 3.8 mg·C·ha ?1·yr ?1. In order to reduce greenhouse gas emissions, we must improve our understanding of the space-time variations and underlying drivers of urban carbon fluxes.

References

[1]  The United Nations Department of Economic and Social Affairs. World Urbanization Prospects, the 2011 Revision. Available online: http://esa.un.org/unup/ (accessed on 10 January 2013).
[2]  Schneider, A.; Friedl, M.A.; Potere, D. A new map of global urban extent from MODIS satellite data. Environ. Res. Lett. 2009, 4, 168–182.
[3]  Seto, K.C.; Reenberg, A.; Boone, C.G.; Fragkias, M.; Haase, D.; Langanke, T.; Marcotullio, P.; Munroe, D.K.; Olah, B.; Simon, D. Urban land teleconnections and sustainability. Proc. Natl. Acad. Sci. USA 2012, 109, 7687–7692, doi:10.1073/pnas.1117622109.
[4]  DeFries, R.S.; Rudel, T.; Uriarte, M.; Hansen, M. Deforestation driven by urban population growth and agricultural trade in the twenty-first century. Nat. Geosci. 2010, 3, 178–181, doi:10.1038/ngeo756.
[5]  World Energy Outlook: 2008; International Energy Agency: Paris, France, 2008.
[6]  Velasco, E.; Roth, M. Cities as net sources of CO2: Review of atmospheric CO2 exchange in urban environments measured by eddy covariance technique. Geogr. Compass 2010, 4, 1238–1259, doi:10.1111/j.1749-8198.2010.00384.x.
[7]  Grimmond, C.S.B.; King, T.S.; Cropley, F.D.; Nowak, D.J.; Souch, C. Local-scale fluxes of carbon dioxide in urban environments: Methodological challenges and results from Chicago. Environ. Pollut. 2002, 116, S243–S254, doi:10.1016/S0269-7491(01)00256-1.
[8]  Baldocchi, D. Breathing of the terrestrial biosphere: Lessons learned from a global network of carbon dioxide flux measurement systems. Aust. J. Bot. 2008, 56, 1–26, doi:10.1071/BT07151.
[9]  Oke, T.R. Boundary Layer Climates, 2nd ed.; Methuen: London, UK/New York, NY, USA, 1987; Volume XXIV, p. 435.
[10]  Oke, T.R. The energetic basis of the urban heat-island. Quart. J. Roy. Meteorol. Soc. 1982, 108, 1–24.
[11]  Zhang, X.Y.; Friedl, M.A.; Schaaf, C.B.; Strahler, A.H. Climate controls on vegetation phenological patterns in northern mid- and high latitudes inferred from MODIS data. Glob. Change Biol. 2004, 10, 1133–1145, doi:10.1111/j.1529-8817.2003.00784.x.
[12]  Richardson, A.D.; Black, T.A.; Ciais, P.; Delbart, N.; Friedl, M.A.; Gobron, N.; Hollinger, D.Y.; Kutsch, W.L.; Longdoz, B.; Luyssaert, S.; et al. Influence of spring and autumn phenological transitions on forest ecosystem productivity. Phil. Trans. Roy. Soc. B-Biol. Sci. 2010, 365, 3227–3246, doi:10.1098/rstb.2010.0102.
[13]  Pickett, S.T.A.; Cadenasso, M.L.; Grove, J.M.; Boone, C.G.; Groffman, P.M.; Irwin, E.; Kaushal, S.S.; Marshall, V.; McGrath, B.P.; Nilon, C.H.; et al. Urban ecological systems: Scientific foundations and a decade of progress. J. Environ. Manage. 2011, 92, 331–362, doi:10.1016/j.jenvman.2010.08.022.
[14]  McDonnell, M.J.; Hahs, A.K. The use of gradient analysis studies in advancing our understanding of the ecology of urbanizing landscapes: current status and future directions. Landscape Ecol. 2008, 23, 1143–1155, doi:10.1007/s10980-008-9253-4.
[15]  Idso, C.D.; Idso, S.B.; Balling, R.C. An intensive two-week study of an urban CO2 dome in Phoenix, Arizona, USA. Atmos. Environ. 2001, 35, 995–1000, doi:10.1016/S1352-2310(00)00412-X.
[16]  Strong, C.; Stwertka, C.; Bowling, D.R.; Stephens, B.B.; Ehleringer, J.R. Urban carbon dioxide cycles within the Salt Lake Valley: A multiple-box model validated by observations. J. Geophys. Res.-Atmos. 2011, doi:10.1029/2011JD015693.
[17]  George, K.; Ziska, L.H.; Bunce, J.A.; Quebedeaux, B. Elevated atmospheric CO2 concentration and temperature across an urban-rural transect. Atmos. Environ. 2007, 41, 7654–7665, doi:10.1016/j.atmosenv.2007.08.018.
[18]  Vesala, T.; Jarvi, L.; Launiainen, S.; Sogachev, A.; Rannik, U.; Mammarella, I.; Siivola, E.; Keronen, P.; Rinne, J.; Riikonen, A.; et al. Surface-atmosphere interactions over complex urban terrain in Helsinki, Finland. Tellus B 2008, 60, 188–199, doi:10.1111/j.1600-0889.2007.00312.x.
[19]  Velasco, E.; Pressley, S.; Allwine, E.; Westberg, H.; Lamb, B. Measurements of CO2 fluxes from the Mexico City urban landscape. Atmos. Environ. 2005, 39, 7433–7446, doi:10.1016/j.atmosenv.2005.08.038.
[20]  Vogt, R.; Christen, A.; Rotach, M.W.; Roth, M.; Satyanarayana, A.N.V. Temporal dynamics of CO2 fluxes and profiles over a central European city. Theor. Appl. Climatol. 2006, 84, 117–126, doi:10.1007/s00704-005-0149-9.
[21]  Coutts, A.M.; Beringer, J.; Tapper, N.J. Characteristics influencing the variability of urban CO2 fluxes in Melbourne, Australia. Atmos. Environ. 2007, 41, 51–62, doi:10.1016/j.atmosenv.2006.08.030.
[22]  Day, T.A.; Gober, P.; Xiong, F.S.S.; Wentz, E.A. Temporal patterns in near-surface CO2 concentrations over contrasting vegetation types in the Phoenix metropolitan area. Agr. Forest Meteorol. 2002, 110, 229–245, doi:10.1016/S0168-1923(01)00288-X.
[23]  Gratani, L.; Varone, L. Daily and seasonal variation of CO2 in the city of Rome in relationship with the traffic volume. Atmos. Environ. 2005, 39, 2619–2624, doi:10.1016/j.atmosenv.2005.01.013.
[24]  Kennedy, C.; Cuddihy, J.; Engel-Yan, J. The changing metabolism of cities. J. Ind. Ecol. 2007, 11, 43–59, doi:10.1162/jie.2007.1107.
[25]  Christen, A.; Coops, N.C.; Crawford, B.R.; Kellett, R.; Liss, K.N.; Olchovski, I.; Tooke, T.R.; van der Laan, M.; Voogt, J.A. Validation of modeled carbon-dioxide emissions from an urban neighborhood with direct eddy-covariance measurements. Atmos. Environ. 2011, 45, 6057–6069, doi:10.1016/j.atmosenv.2011.07.040.
[26]  Bergeron, O.; Strachan, I.B. CO2 sources and sinks in urban and suburban areas of a northern mid-latitude city. Atmos. Environ. 2011, 45, 1564–1573, doi:10.1016/j.atmosenv.2010.12.043.
[27]  Zhou, Y.; Gurney, K. A new methodology for quantifying on-site residential and commercial fossil fuel CO2 emissions at the building spatial scale and hourly time scale. Carbon Manage. 2010, 1, 45–56, doi:10.4155/cmt.10.7.
[28]  Grimmond, C.S.B. Progress in measuring and observing the urban atmosphere. Theor. Appl. Climatol. 2006, 84, 3–22, doi:10.1007/s00704-005-0140-5.
[29]  Raciti, S.M.; Hutyra, L.R.; Rao, P.; Finzi, A.C. Inconsistent definitions of “urban” result in different conclusions about the size of urban carbon and nitrogen stocks. Ecol. Appl. 2012, 22, 1015–1035, doi:10.1890/11-1250.1.
[30]  Hutyra, L.R.; Yoon, B.; Hepinstall-Cymerman, J.; Alberti, M. Carbon consequences of land cover change and expansion of urban lands: A case study in the Seattle metropolitan region. Landscape Urban Plan. 2011, 103, 83–93, doi:10.1016/j.landurbplan.2011.06.004.
[31]  Crawford, B.; Grimmond, C.S.B.; Christen, A. Five years of carbon dioxide fluxes measurements in a highly vegetated suburban area. Atmos. Environ. 2011, 45, 896–905, doi:10.1016/j.atmosenv.2010.11.017.
[32]  Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.G.; Bai, X.M.; Briggs, J.M. Global change and the ecology of cities. Science 2008, 319, 756–760, doi:10.1126/science.1150195.
[33]  Kaye, J.P.; Groffman, P.M.; Grimm, N.B.; Baker, L.A.; Pouyat, R.V. A distinct urban biogeochemistry? Trend. Ecol. Evolut. 2006, 21, 192–199, doi:10.1016/j.tree.2005.12.006.
[34]  Liu, J.G.; Dietz, T.; Carpenter, S.R.; Alberti, M.; Folke, C.; Moran, E.; Pell, A.N.; Deadman, P.; Kratz, T.; Lubchenco, J.; et al. Complexity of coupled human and natural systems. Science 2007, 317, 1513–1516, doi:10.1126/science.1144004.
[35]  Peters, E.B.; McFadden, J.P. Continuous measurements of net CO2 exchange by vegetation and soils in a suburban landscape. J. Geophys. Res. Biogeosci. 2012, 117, G03005, doi:10.1029/2011JG001933.
[36]  Pataki, D.E.; Carreiro, M.M.; Cherrier, J.; Grulke, N.E.; Jennings, V.; Pincetl, S.; Pouyat, R.V.; Whitlow, T.H.; Zipperer, W.C. Coupling biogeochemical cycles in urban environments: ecosystem services, green solutions, and misconceptions. Front. Ecol. Environ. 2011, 9, 27–36, doi:10.1890/090220.
[37]  Reid, K.H.; Steyn, D.G. Diurnal variations of boundary-layer carbon dioxide in a coastal city—Observations and comparison with model results. Atmos. Environ. 1997, 31, 3101–3114, doi:10.1016/S1352-2310(97)00050-2.
[38]  Global Monitioring Division, Earth System Research Laboratory. Trendsin Atmospheric Carbon Dioxide. Available online: http://www.esrl.noaa.gov/gmd/ccgg/trends/ (accessed on 1 July 2011).
[39]  Project Vulcan: Research Data. Available online: http://vulcan.project.asu.edu/research.php (accessed on 1 May 2011).
[40]  State of the Urban Forest Report; Urban Ecology Institute: Boston, MA., USA, 2008.
[41]  Rice, A.; Bostrom, G. Measurements of carbon dioxide in an Oregon metropolitan region. Atmos. Environ. 2011, 45, 1138–1144, doi:10.1016/j.atmosenv.2010.11.026.
[42]  Urbanski, S.; Barford, C.; Wofsy, S.; Kucharik, C.; Pyle, E.; Budney, J.; McKain, K.; Fitzjarrald, D.; Czikowsky, M.; Munger, J.W. Factors controlling CO2 exchange on timescales from hourly to decadal at Harvard Forest. J. Geophys. Res.-Biogeosci. 2007, 112, G02020, doi:10.1029/2006JG000293.
[43]  Arnfield, A.J. Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. Int. J. Climatol. 2003, 23, 1–26, doi:10.1002/joc.859.
[44]  Bonan, G.B. Ecological Climatology : Concepts and Applications, 2nd ed.; Cambridge University Press: Cambridge, UK/New York, NY, USA, 2008; Volume XVI, p. 550.
[45]  Roetzer, T.; Wittenzeller, M.; Haeckel, H.; Nekovar, J. Phenology in central Europe—Differences and trends of spring phenophases in urban and rural areas. Int. J. Biometeorol. 2000, 44, 60–66, doi:10.1007/s004840000062.
[46]  Wu, C.Y.; Gonsamo, A.; Chen, J.M.; Kurz, W.A.; Price, D.T.; Lafleur, P.M.; Jassal, R.S.; Dragoni, D.; Bohrer, G.; Gough, C.M.; et al. Interannual and spatial impacts of phenological transitions, growing season length, and spring and autumn temperatures on carbon sequestration: A North America flux data synthesis. Global Planet. Change 2012, 92–93, 179–190.
[47]  National Oceanic and Atmospheric Administration (NOAA). National Weather Service Degree Day Statistics: Archives. Available online: http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/cdus/degree_days/ (accessed on 12 January 2013).
[48]  Falge, E.; Baldocchi, D.; Tenhunen, J.; Aubinet, M.; Bakwin, P.; Berbigier, P.; Bernhofer, C.; Burba, G.; Clement, R.; Davis, K.J.; et al. Seasonality of ecosystem respiration and gross primary production as derived from FLUXNET measurements. Agr. Forest Meteorol. 2002, 113, 53–74, doi:10.1016/S0168-1923(02)00102-8.
[49]  Pouyat, R.V.; Yesilonis, I.D.; Nowak, D.J. Carbon storage by urban soils in the United States. J. Environ. Qual. 2006, 35, 1566–1575, doi:10.2134/jeq2005.0215.
[50]  Zhu, Z.; Woodcock, C.E. Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sens. Environ. 2012, 118, 83–94, doi:10.1016/j.rse.2011.10.028.
[51]  Nordbo, A.; Jarvi, L.; Haapanala, S.; Wood, C.R.; Vesala, T. Fraction of natural area as main predictor of net CO2 emissions from cities. Geophys. Res. Lett. 2012, 39, L20802.
[52]  Technology Transfer Network: Clearinghouse for Inventories & Emissions Factors. Available online: http://www.epa.gov/ttnchie1/eiinformation.html (accessed on 15 April 2012).
[53]  MassGIS Data Layers. Available online: http://www.mass.gov/anf/research-and-tech/it-serv-and-support/application-serv/office-of-geographic-information-massgis/datalayers/ (accessed on 10 November 2012).
[54]  Wofsy, S.C.; Goulden, M.L.; Munger, J.W.; Fan, S.M.; Bakwin, P.S.; Daube, B.C.; Bassow, S.L.; Bazzaz, F.A. Net exchange of CO2 in a midlatitude forest. Science 1993, 260, 1314–1317.
[55]  Barford, C.C.; Wofsy, S.C.; Goulden, M.L.; Munger, J.W.; Pyle, E.H.; Urbanski, S.P.; Hutyra, L.; Saleska, S.R.; Fitzjarrald, D.; Moore, K. Factors controlling long- and short-term sequestration of atmospheric CO2 in a mid-latitude forest. Science 2001, 294, 1688–1691, doi:10.1126/science.1062962.
[56]  Foster, C.H.W. Forests in time: The environmental consequences of 1,000 years of change in New England. J. Interdiscipl. Hist. 2005, 36, 270–271, doi:10.1162/0022195054741442.
[57]  Unites States Census Bureau: 2010 Census Data. Available online: http://www.census.gov/2010census/data/ (accessed on 6 February 2011).
[58]  Rella, C.W. Accurate Greenhouse Gas Measurements in Humid Gas Streams Using the Picarro G1301 Carbon Dioxide/Methane/Water Vapor Gas Analyzer; Picarro, Inc.: Santa Clara, CA, USA, 2010.
[59]  Britter, R.E.; Hanna, S.R. Flow and dispersion in urban areas. Annu. Rev. Fluid Mech. 2003, 35, 469–496, doi:10.1146/annurev.fluid.35.101101.161147.
[60]  Roth, M. Review of atmospheric turbulence over cities. Quart. J. Roy. Meteorol. Soc. 2000, 126, 941–990, doi:10.1002/qj.49712656409.
[61]  Kanda, M. Progress in urban meteorology: A review. J. Meteorol. Soc. Jpn. 2007, 85B, 363–383, doi:10.2151/jmsj.85B.363.
[62]  Team, R.C. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2012.
[63]  Efron, B.; Tibshirani, R. An Introduction to the Bootstrap; Chapman & Hall: New York, NY, USA, 1993; Volume XVI, p. 436.
[64]  Cleveland, W.S.; Devlin, S.J. Locally weighted regression: An approach to regression analysis by local fitting. J. Amer. Statist. Assn. 1988, 83, 596–610, doi:10.1080/01621459.1988.10478639.
[65]  Gurney, K.R.; Mendoza, D.L.; Zhou, Y.Y.; Fischer, M.L.; Miller, C.C.; Geethakumar, S.; Du Can, S.D. High resolution fossil fuel combustion CO2 emission fluxes for the United States. Environ. Sci. Technol. 2009, 43, 5535–5541.
[66]  Raciti, S.M.; Fahey, T.J.; Thomas, R.Q.; Woodbury, P.B.; Driscoll, C.T.; Carranti, F.J.; Foster, D.R.; Gwyther, P.S.; Hall, B.R.; Hamburg, S.P.; et al. Local-scale carbon budgets and mitigation opportunities for the Northeastern United States. Bioscience 2012, 62, 23–38, doi:10.1525/bio.2012.62.1.7.
[67]  Prairie, Y.T.; Duarte, C.M. Direct and indirect metabolic CO2 release by humanity. Biogeosciences 2007, 4, 215–217, doi:10.5194/bg-4-215-2007.
[68]  Google Maps. Available online: http://maps.google.com/ (accessed on 10 March 2011).
[69]  Abramoff, M.D.; Magalhaes, P.J.; Ram, S.J. Image processing with ImageJ. Biophot. Inter. 2004, 11, 36–42.
[70]  Tucker, C.J.; Sellers, P.J. Satellite remote-sensing of primary production. Int. J. Remote Sens. 1986, 7, 1395–1416, doi:10.1080/01431168608948944.
[71]  Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213, doi:10.1016/S0034-4257(02)00096-2.
[72]  Melaas, E.; Friedl, M.A.; Zhu, Z. Detecting interannual variation in deciduous broadleaf forest phenology using Landsat TM/ETM+ data. Remote Sens. Environ. 2013, 132, 176–185, doi:10.1016/j.rse.2013.01.011.
[73]  Zhang, X.Y.; Friedl, M.A.; Schaaf, C.B.; Strahler, A.H.; Schneider, A. The footprint of urban climates on vegetation phenology. Geophys. Res. Lett. 2004, 31, 12.
[74]  ArcGIS 10.0; Environmental Systems Research Institute: Redlands, CA, USA, 2011.
[75]  Kellett, R.; Christen, A.; Coops, N.C.; Van der Laan, M.; Crawford, B.; Tooke, T.R.; Olchovski, I. A systems approach to carbon cycling and emissions modeling at an urban neighborhood scale. Landscape Urban Plan. 2013, 110, 48–58, doi:10.1016/j.landurbplan.2012.10.002.
[76]  Gately, C.K.; Hutyra, L.R.; Wing, I.S.; Brondfield, M.N. A bottom up approach to on-road CO2 emissions estimates: Improved spatial accuracy and applications for regional planning. Environ. Sci. Technol. 2013. in press.
[77]  United States Census Bureau: 2000 Census of Population and Housing. Available online: http://www.census.gov/prod/cen2000/ (accessed on 15 February 2013).
[78]  Verifying Greenhouse Gas Emissions: Methods to Support International Climate Agreements; National Academies Press: Washington, DC, USA, 2010; Volume XIV, p. 110.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133