全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Subsampling algorithms for semidefinite programming

Keywords: Semidefinite programming , stochastic optimization , subsampling

Full-Text   Cite this paper   Add to My Lib

Abstract:

We derive a stochastic gradient algorithm for semidefinite optimization using randomization techniques. The algorithm uses subsampling to reduce the computational cost of each iteration and the subsampling ratio explicitly controls granularity, i.e. the tradeoff between cost per iteration and total number of iterations. Furthermore, the total computational cost is directly proportional to the complexity (i.e. rank) of the solution. We study numerical performance on some large-scale problems arising in statistical learning.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133