|
BMC Systems Biology 2010
A Novel microRNA and transcription factor mediated regulatory network in schizophreniaAbstract: We identified 32 feed-forward loops (FFLs) among our compiled schizophrenia-related miRNAs, TFs and genes. Our evaluation revealed that these observed FFLs were significantly enriched in schizophrenia genes. By converging the FFLs and mutual feedback loops, we constructed a novel miRNA-TF regulatory network for schizophrenia. Our analysis revealed EGR3 and hsa-miR-195 were core regulators in this regulatory network. We next proposed a model highlighting EGR3 and miRNAs involved in signaling pathways and regulatory networks in the nervous system. Finally, we suggested several single nucleotide polymorphisms (SNPs) located on miRNAs, their target sites, and TFBSs, which may have an effect in schizophrenia gene regulation.This study provides many insights on the regulatory mechanisms of genes involved in schizophrenia. It represents the first investigation of a miRNA-TF regulatory network for a complex disease, as demonstrated in schizophrenia.Schizophrenia is a complex, chronic and severe brain disorder. So far, its pathophysiology and molecular mechanisms have remained poorly understood [1]. In the last decade numerous linkage and association studies, including a few genome-wide association studies (GWAS), have been performed to identify genetic predispositions to the disease, but most studies have been inconclusive. The limited success in the detection of genetic factors led us to hypothesize that schizophrenia is likely caused by the altered expression of many genes, which may individually contribute only a small risk, but may in aggregate interact at the biological pathway or gene-network level.Recently, patterns of differential gene expression have been identified between schizophrenia case and control samples [2,3]. MicroRNAs (miRNAs) and transcription factors (TFs) are main regulators of gene expression. MiRNAs are short endogenous noncoding RNAs that mediate post transcriptional regulation and regulate a wide range of biological processes and diseases [4,5]. I
|