全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Confidence from uncertainty - A multi-target drug screening method from robust control theory

DOI: 10.1186/1752-0509-4-161

Full-Text   Cite this paper   Add to My Lib

Abstract:

We present the application of a method from robust control theory, Structured Singular Value or μ- analysis, to identify highly effective multi-drug therapies by using robustness in the face of uncertainty as a new means of target discrimination. We illustrate the method by means of a case study of a negative feedback network motif subject to parametric uncertainty.The paper contributes to the development of effective methods for drug screening in the context of network modelling affected by parametric uncertainty. The results have wide applicability for the analysis of different sources of uncertainty like noise experienced in the data, neglected dynamics, or intrinsic biological variability.Biological systems are hierarchically organized, from genes to proteins up to the organism level. At the cellular level, complex interconnected networks include metabolic signalling, signal transduction, and transcriptional regulatory networks [1]. Some general features of biological networks have been explored computationally, such as robustness [2], modularity [3], control coefficients [4], and connectivity properties [5]. Robustness is defined as the ability to maintain functional performance in the presence of uncertainty [2,6], and it is particularly relevant in therapy design as drug effectiveness should be independent from predictable sources of variability.Complex diseases often exploit the same strategies present in healthy networks to gain a robust status [2]. Diseases such as diabetes, cancer, bacterial and viral infections, represent multiple disruptions within the host network structure rather than single events, such as a DNA point mutation [7]. Signalling redundancy, feedback, and other network strategies adopted by the disease, ensure that it will be robust to disturbances within its architecture. Hence, single-target therapies fail in many cases because network characteristics are not accounted for during target identification [8,9]. On the other hand, multi-dr

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133