|
BMC Systems Biology 2011
Proteomic patterns of cervical cancer cell lines, a network perspectiveAbstract: With this study, we sought to achieve a systemic perspective of the common proteomic profile of six cervical cancer cell lines, both positive and negative for HPV, and which differ from the profile corresponding to the non-tumourgenic cell line, HaCaT. Our objectives were to identify common cellular events participating in cancer maintenance, as well as the establishment of a pipeline to work with proteomic-derived results. We analyzed by means of 2D SDS-PAGE and MALDI-TOF mass spectrometry the protein extracts of six cervical cancer cell lines, from which we identified a consensus of 66 proteins. We call this group of proteins, the "central core of cervical cancer". Starting from this core set of proteins, we acquired a PPI network that pointed, through topological analysis, to some proteins that may well be playing a central role in the neoplastic process, such as 14-3-3ζ. In silico overrepresentation analysis of transcription factors pointed to the overexpression of c-Myc, Max and E2F1 as key transcription factors involved in orchestrating the neoplastic phenotype.Our findings show that there is a "central core of cervical cancer" protein expression pattern, and suggest that 14-3-3ζ is key to determine if the cell proliferates or dies. In addition, our bioinformatics analysis suggests that the neoplastic phenotype is governed by a non-canonical regulatory pathway.The definition of cancer has evolved according to the knowledge and perspective of the scientific context in which it is conceived. It has changed from a highly heterogeneous disease seen from a cell type and tissue of origin point of view, to the conception of cancer as an illness that involves the deregulation of various pathways that govern key, and somewhat common, cellular processes [1]. Particularly, in 2000 Hanahan and Weinberg suggested that all cancer types represent a manifestation of six essential alterations in cell physiology that collectively coordinate the malignant phenotype: self-suffici
|