|
BMC Surgery 2005
Complications after cryosurgery with new miniature cryoprobes in long hollow bones: An animal trialAbstract: Cryoablations with 2 freeze-thaw cycles each were carried out in the epiphysis of the right tibia and the metaphysis of the left femur. Pulmonary artery pressure (PAP) and central venous pressure (CVP) were measured. Throughout the intra- and perioperative phase, heart rate and oxygen saturation by pulse oxymetry, blood gas and electrolytes were monitored regularly. Postoperative complications were examined up to 24 weeks postoperativ.As result, no significant increase of PAP, CVP or heart rate were observed. Blood gases were unremarkable, with pO2 and pCO2 remaining constant throughout the operation. Regarding pH, standard bicarbonate and base excess, only a non-significant shift towards a slight acidosis was seen. There was a mean hemoglobin decrease of 0.5 g/dl. One animal showed postoperative wound infection and wound edge necrosis. No major peri- and postoperative complications associated with cryosurgery of bone were observed, especially regarding clinically relevant pulmonary embolism.Surgery with new types of miniature cryoprobes appears to be a safe alternative to or a complement to conventional resection of abnormal bone tissue.Surgical treatment of bone tumours often requires generous resection of bone, leaving defects which are difficult to span. Freezing tumours with liquid nitrogen was introduced in the late 1960's as an adjuvant treatment to extend the surgical margin of excision for intralesional resection or for curettage by pouring or spraying the nitrogen directly into the bone cavity [1-9]. Animal trials by Gage et al. [10] have shown that devitalised bone matrix can serve as a framework for new periostal and endostal growth, and hence that the former tumour space can be bridged with autologous, healthy bone tissue. However, the freezing procedure is difficult to control, and therefore harbours risks of injury for the patient [11,12] and the surgical team, as well as of gas embolisms caused by evaporation [13] and spread of the liquid nitrogen.As
|