全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Specification, annotation, visualization and simulation of a large rule-based model for ERBB receptor signaling

DOI: 10.1186/1752-0509-6-107

Keywords: Systems biology, Epidermal growth factor (EGF) receptor (EGFR), Rule-based modeling, Temporal phosphoproteomics

Full-Text   Cite this paper   Add to My Lib

Abstract:

Here, we provide a demonstration that the rule-based modeling approach can be used to specify and simulate a large model for ERBB receptor signaling that accounts for site-specific details of protein-protein interactions. The model is considered large because it corresponds to a reaction network containing more reactions than can be practically enumerated. The model encompasses activation of ERK and Akt, and it can be simulated using a network-free simulator, such as NFsim, to generate time courses of phosphorylation for 55 individual serine, threonine, and tyrosine residues. The model is annotated and visualized in the form of an extended contact map.With the development of software that implements novel computational methods for calculating the dynamics of large-scale rule-based representations of cellular signaling networks, it is now possible to build and analyze models that include a significant fraction of the protein interactions that comprise a signaling network, with incorporation of the site-specific details of the interactions. Modeling at this level of detail is important for understanding cellular signaling.Modeling is an essential component of systems biology [1]. An important class of models is the class based on mass-action chemical kinetics. Models have the potential to elucidate the behaviors that logically follow from mechanistic knowledge and assumptions, which can often be reduced to a collection of reactions and the parameters that characterize the mass-action kinetics of these reactions [2,3]. The parameters of models for the chemical kinetics of molecular interactions can be measured independently, at least in principle, and must take on values consistent with physicochemical constraints. Models capturing mass-action chemical kinetics can be specified in various traditional forms, such as that of ordinary differential equations (ODEs). This approach has been quite useful for studying small modules at biochemical reaction resolution [4]. Coars

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133