全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Optimized submerged batch fermentation strategy for systems scale studies of metabolic switching in Streptomyces coelicolor A3(2)

DOI: 10.1186/1752-0509-6-59

Full-Text   Cite this paper   Add to My Lib

Abstract:

By a step-wise approach, cultivation conditions and two fully defined cultivation media were developed and evaluated using strain M145 of S. coelicolor A3(2), providing a high degree of cultivation reproducibility and enabling reliable studies of the effect of phosphate depletion and L-glutamate depletion on the metabolic transition to antibiotic production phase. Interestingly, both of the two carbon sources provided, D-glucose and L-glutamate, were found to be necessary in order to maintain high growth rates and prevent secondary metabolite production before nutrient depletion. Comparative analysis of batch cultivations with (i) both L-glutamate and D-glucose in excess, (ii) L-glutamate depletion and D-glucose in excess, (iii) L-glutamate as the sole source of carbon and (iv) D-glucose as the sole source of carbon, reveal a complex interplay of the two carbon sources in the bacterium's central carbon metabolism.The present study presents for the first time a dedicated cultivation strategy fulfilling the requirements for systems biology studies of metabolic switching in S. coelicolor A3(2). Key results from labelling and cultivation experiments on either or both of the two carbon sources provided indicate that in the presence of D-glucose, L-glutamate was the preferred carbon source, while D-glucose alone appeared incapable of maintaining culture growth, likely due to a metabolic bottleneck at the oxidation of pyruvate to acetyl-CoA.Streptomyces coelicolor A3(2) is the best studied member of the genus Streptomyces[1], which provides the source of numerous antibiotic compounds in clinical use today. The genome sequence of S. coelicolor A3(2) was published in 2002 [2] revealing its genome as one of the largest bacterial genomes known to date. Like most members of the genus, it exhibits a complex life-cycle including the differentiation of substrate mycelium to aerial mycelium and the formation of spores [3]. Upon nutrient limitation, S. coelicolor A3(2) responds with

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133