全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Predicting and characterizing selective multiple drug treatments for metabolic diseases and cancer

DOI: 10.1186/1752-0509-6-115

Full-Text   Cite this paper   Add to My Lib

Abstract:

Two different applications are considered: finding drug synergisms for human metabolic diseases (like diabetes, obesity and hypertension) and finding antitumoral drug combinations with minimal side effect on the normal human metabolism. The results we obtain are consistent with some of the available therapeutic indications and predict some new multiple drug treatments. A cluster analysis on all possible interactions among the currently available drugs indicates a limited variety on the metabolic targets for the approved drugs.The in silico prediction of drug synergism can represent an important tool for the repurposing of drug in a realistic perspective which considers also the selectivty of the therapy. Moreover, for a more profitable exploitation of drug-drug interactions, also drugs which show a too low efficacy but which have a non-common mechanism of action, can be reconsider as potential ingredients of new multicompound therapeutic indications. Needless to say the clues provided by a computational study like ours need in any case to be thoroughly evaluated experimentally.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133