全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Ligand-induced conformational changes in a thermophilic ribose-binding protein

DOI: 10.1186/1472-6807-8-50

Full-Text   Cite this paper   Add to My Lib

Abstract:

Here we present biochemical characterization and crystal structure determination of the periplasmic ribose-binding protein (RBP) from the hyperthermophile Thermotoga maritima in its ribose-bound and unliganded state. The T. maritima RBP (tmRBP) has 39% sequence identity and is considerably more resistant to thermal denaturation (appTm value is 108°C) than the mesophilic Escherichia coli homolog (ecRBP) (appTm value is 56°C). Polar ligand interactions and ligand-induced global conformational changes are conserved among ecRBP and tmRBP; however local structural rearrangements involving side-chain motions in the ligand-binding site are not conserved.Although the large-scale ligand-induced changes are mediated through similar regions, and are produced by similar backbone movements in tmRBP and ecRBP, the small-scale ligand-induced structural rearrangements differentiate the mesophile and thermophile. This suggests there are mechanistic differences in the manner by which these two proteins bind their ligands and are an example of how two structurally similar proteins utilize different mechanisms to form a ligand-bound state.Bacterial periplasmic binding proteins (PBP) are receptors for extracellular solutes in metabolite uptake [1], chemotaxis [2], and intercellular communication [3] processes. The PBPs collectively constitute a structural protein superfamily characterized by two pseudo-symmetric domains that are linked by a hinge formed by two or three β-strands connecting the domains; a ligand-binding site is situated at the interface between the two domains [4]. Each domain adopts a three-layered α/β/α sandwich fold and is classified into one of three structural sub-categories (group I/ribose-binding protein fold, group II/maltose-binding protein fold, and group III/Vitamin B12-binding protein fold) [5] according to β-strand topology.Ligand-free PBPs adopt an open conformation in which the inter-domain interface is exposed to solvent. Solute binding induces a conforma

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133