全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Atomic structures and functional implications of the archaeal RecQ-like helicase Hjm

DOI: 10.1186/1472-6807-9-2

Full-Text   Cite this paper   Add to My Lib

Abstract:

We determined the crystal structures of PfuHjm, in two apo-states and two nucleotide bound forms, at resolutions of 2.0–2.7 ?. The overall structures and the local conformations around the nucleotide binding sites are almost the same, including the side-chain conformations, irrespective of the nucleotide-binding states. The architecture of Hjm was similar to that of Archaeoglobus fulgidus Hel308 complexed with DNA. An Hjm-DNA complex model, constructed by fitting the five domains of Hjm onto the corresponding Hel308 domains, indicated that the interaction of Hjm with DNA is similar to that of Hel308. Notably, sulphate ions bound to Hjm lie on the putative DNA binding surfaces. Electron microscopic analysis of an Hjm-DNA complex revealed substantial flexibility of the double stranded region of DNA, presumably due to particularly weak protein-DNA interactions. Our present structures allowed reasonable homology model building of the helicase region of human PolΘ, indicating the strong conformational conservation between archaea and eukarya.The detailed comparison between our DNA-free PfuHjm structure and the structure of Hel308 complexed with DNA suggests similar DNA unwinding and translocation mechanisms, which could be generalized to all of the members in the same family. Structural comparison also implied a minor rearrangement of the five domains during DNA unwinding reaction. The unexpected small contact between the DNA duplex region and the enzyme appears to be advantageous for processive helicase activity.DNA helicases are enzymes that translocate along DNA and unwind double-stranded regions in an ATP-dependent manner [1,2]. They play crucial and universal roles in DNA metabolism, such as DNA replication and recombinational repair. As a consequence of their physiologically important functions, many reports have been published regarding protein characterization and catalytic mechanisms, including the relationships between enzymatic dysfunctions and several human g

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133