全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Computational analysis and determination of a highly conserved surface exposed segment in H5N1 avian flu and H1N1 swine flu neuraminidase

DOI: 10.1186/1472-6807-10-6

Full-Text   Cite this paper   Add to My Lib

Abstract:

We extend the graphical and numerical analyses to a larger number of H5N1 NA sequences (514) and H1N1 swine flu sequences (425) accessed from GenBank. We use a 2D graphical representation model for the gene sequences and a Graphical Sliding Window Method (GSWM) for protein sequences scanning the sequences as a block of 16 amino acids at a time. Using a protein sequence descriptor defined in our model, the protein sliding scan method allowed us to compare the different strains for block level variability, which showed significant statistical correlation to average solvent accessibility of the residue blocks; single amino acid position variability results in no correlation, indicating the impact of stretch variability in chemical environment. Close to the C-terminal end the GSWM showed less descriptor-variability with increased average solvent accessibility (ASA) that is also supported by conserved predicted secondary structure of 3' terminal RNA and visual evidence from 3D crystallographic structure.The identified terminal segment, strongly conserved in both RNA and protein sequences, is especially significant as it is surface exposed and structural chemistry reveals the probable role of this stretch in tetrameric stabilization. It could also participate in other biological processes associated with conserved surface residues. A RNA double hairpin secondary structure found in this segment in a majority of the H5N1 strains also supports this observation. In this paper we propose this conserved region as a probable site for designing inhibitors for broad-spectrum pandemic control of flu viruses with similar NA structure.A pandemic occurs when a new viral strain appears, against which the human population has no immunity, resulting in epidemics worldwide with high mortality and morbidity. It is estimated that the influenza pandemic that started with the 1918 Spanish flu killed ~20 to 50 million people worldwide [1], followed by epidemics of Asian flu in 1957, Hong Kong

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133