全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

OxDBase: a database of oxygenases involved in biodegradation

DOI: 10.1186/1756-0500-2-67

Full-Text   Cite this paper   Add to My Lib

Abstract:

We compiled a database of biodegradative oxygenases (OxDBase) which provides a compilation of the oxygenase data as sourced from primary literature in the form of web accessible database. There are two separate search engines for searching into the database i.e. mono and dioxygenases database respectively. Each enzyme entry contains its common name and synonym, reaction in which enzyme is involved, family and subfamily, structure and gene link and literature citation. The entries are also linked to several external database including BRENDA, KEGG, ENZYME and UM-BBD providing wide background information. At present the database contains information of over 235 oxygenases including both dioxygenases and monooxygenases. This database is freely available online at http://www.imtech.res.in/raghava/oxdbase/ webcite.OxDBase is the first database that is dedicated only to oxygenases and provides comprehensive information about them. Due to the importance of the oxygenases in chemical synthesis of drug intermediates and oxidation of xenobiotic compounds, OxDBase database would be very useful tool in the field of synthetic chemistry as well as bioremediation.In the last few decades, extensive urbanization and rapid industrialization has resulted in the addition of a large number of xenobiotic compounds into the environment. The chemical properties and quantities of the xenobiotic compounds determine their toxicity and persistence in the environment. Organic (aromatic/non-aromatic) compounds constitute a major group of environmental pollutants [1]. These compounds are highly persistent in the environment due to their thermodynamic stability [2]. Many of these compounds have been reported to be toxic to the living organisms [3]. Increased public awareness about the hazards and toxicity of these compounds has encouraged the development of technologies for their remediation. Bioremediation, which utilizes the microbial metabolic potential of the degrading microorganisms, has come

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133