|
BMC Research Notes 2009
Construction and analysis of cotton (Gossypium arboreum L.) drought-related cDNA libraryAbstract: Here we constructed a subtractive drought-tolerance cDNA library using suppressive subtractive hybridization (SSH). Through differential screening and bioinformatics analysis, we identified 392 positive clones with differential expression, corresponding 265 unique genes. By BLAST search against Genbank, we found that more than half of these EST sequences were homologous to those previously known drought-related genes and that there were 57 sequences with unknown functions, suggesting that many more genes are involved in this complex trait. Moreover, using RT-PCR, we examined the expression of nine representative candidate genes and confirmed that their expression levels were increased at different levels under drought stress.Our results show that drought tolerance is a complex trait in cotton, which involves the coordination of many genes and multiple metabolism pathways. The candidate EST sequences we identified here would facilitate further functional studies of drought-related genes and provide important insights into the molecular mechanisms of drought-stress tolerance and genetic breeding in cotton.Drought stress is a crucial limiting factor for cotton production. Hence, enhancing drought tolerance has been one of the key issues in the practice of cotton planting. Breeding has been used to improve the drought tolerance of cotton, but so far the progress with this approach has been slow and limited [1]. Genetic engineering is another approach that could be used. However, with this approach, information about genes involved in cotton drought stress is required in advance. For this purpose, up-regulating key genes under drought stress may enhance drought tolerance.Many drought-related genes have been reported in other plants, including maize, rice, and Arabidopsis. These genes can be mainly classified into two groups. One group contains proteins whose function is directly involved in stress tolerance, such as the enzymes required for photosynthesis enzymes [2,3],
|