|
BMC Research Notes 2009
BiGGEsTS: integrated environment for biclustering analysis of time series gene expression dataAbstract: BiGGEsTS makes available state-of-the-art biclustering algorithms for analyzing expression time series. Gene Ontology (GO) annotations are used to assess the biological relevance of the biclusters. Methods for preprocessing expression time series and post-processing results are also included. The analysis is additionally supported by a visualization module capable of displaying informative representations of the data, including heatmaps, dendrograms, expression charts and graphs of enriched GO terms.BiGGEsTS is a free open source graphical software tool for revealing local coexpression of genes in specific intervals of time, while integrating meaningful information on gene annotations. It is freely available at: http://kdbio.inesc-id.pt/software/biggests webcite. We present a case study on the discovery of transcriptional regulatory modules in the response of Saccharomyces cerevisiae to heat stress.Extracting relevant biological information from expression data provides important insights into the relations between genes participating in biological processes. This information can be used to identify co-regulated genes corresponding to transcriptional regulatory modules, thus contributing to the challenging goal of regulatory network inference.Processing expression data is time and resource consuming. In this context, the development of novel computational algorithms and tools for expression data analysis is primarily focused on efficiency and robustness. Clustering techniques have been extensively applied to both dimensions of expression matrices separately, focusing on either gene or sample expression patterns. However, many patterns are common to a subset of genes only in a specific subset of experimental conditions. In fact, our general understanding of cellular processes leads us to expect subsets of genes to be coexpressed only in certain experimental conditions, but to behave almost independently in other. These local expression patterns can only be discovered
|