Although it is now well known that some diseased areas, such as cancer nests, inflammation loci, and infarction areas, are acidified, little is known about cellular signal transduction, gene expression, and cellular functions under acidic conditions. Our group showed that different signal proteins were activated under acidic conditions compared with those observed in a typical medium of around pH 7.4 that has been used until now. Investigations of gene expression under acidic conditions may be crucial to our understanding of signal transduction in acidic diseased areas. In this study, we investigated gene expression in mesothelioma cells cultured at an acidic pH using a DNA microarray technique. After 24 h culture at pH 6.7, expressions of 379 genes were increased more than twofold compared with those in cells cultured at pH 7.5. Genes encoding receptors, signal proteins including transcription factors, and cytokines including growth factors numbered 35, 32, and 17 among the 379 genes, respectively. Since the functions of 78 genes are unknown, it can be argued that cells may have other genes for signaling under acidic conditions. The expressions of 37 of the 379 genes were observed to increase after as little as 2 h. After 24 h culture at pH 6.7, expressions of 412 genes were repressed more than twofold compared with those in cells cultured at pH 7.5, and the 412 genes contained 35, 76, and 7 genes encoding receptors, signal proteins including transcription factors, and cytokines including growth factors, respectively. These results suggest that the signal pathways in acidic diseased areas are different, at least in part, from those examined with cells cultured at a pH of around 7.4.
References
[1]
Vaupel, P.; Kallinowski, F.; Okunieff, P. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: A review. Cancer Res. 1989, 49, 6449–6465.
[2]
Helmlinger, G.; Yuan, F.; Dellian, M.; Jain, R.K. Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nat. Med. 1997, 3, 177–182, doi:10.1038/nm0297-177.
[3]
Warburg, O. On the origin of cancer cells. Science 1956, 123, 309–314.
[4]
Simmen, H.P.; Blaser, J. Analysis of pH and pO2 in abscesses, peritoneal fluid, and drainage fluid in the presence or absence of bacterial infection during and after abdominal surgery. Am. J. Surg. 1993, 166, 24–27, doi:10.1016/S0002-9610(05)80576-8.
[5]
Goldie, I.; Nachemson, A. Synovial pH in rheumatoid knee-joints. I. The effect of synovectomy. Acta Orthop. Scand. 1969, 40, 634–641, doi:10.3109/17453676908989529.
[6]
Ward, T.T.; Steigbigel, R.T. Acidosis of synovial fluid correlates with synovial fluid leukocytosis. Am. J. Med. 1978, 64, 933–936, doi:10.1016/0002-9343(78)90446-1.
[7]
Geborek, P.; Saxne, T.; Pettersson, H.; Wollheim, F.A. Synovial fluid acidosis correlates with radiological joint destruction in rheumatoid arthritis knee joints. J. Rheumatol. 1989, 16, 468–472.
[8]
Andersson, S.E.; Lexmüller, K.; Johansson, A.; Ekstr?m, G.M. Tissue and intracellular pH in normal periarticular soft tissue and during different phases of antigen induced arthritis in the rat. J. Rheumatol. 1999, 26, 2018–2024.
[9]
Ohyama, T.; Igarashi, K.; Kobayashi, H. Physiological role of the chaA gene in sodium and calcium circulations at a high pH in Escherichia coli. J. Bacteriol. 1994, 176, 4311–4315.
[10]
Trchounian, A.; Kobayashi, H. Kup is the major K+ uptake system in Escherichiacoli upon hyper-osmotic stress at a low pH. FEBS Lett. 1999, 447, 144–148, doi:10.1016/S0014-5793(99)00288-4.
[11]
Fukamachi, T.; Saito, H.; Kakegawa, T.; Kobayashi, H. Different proteins are phosphorylated under acidic environments in Jurkat cells. Immunol. Lett. 2002, 82, 155–158, doi:10.1016/S0165-2478(02)00031-7.
[12]
Hirata, S.; Fukamachi, T.; Sakano, H.; Tarora, A.; Saito, H.; Kobayashi, H. Extracellular acidic environments induce phosphorylation of ZAP-70 in Jurkat T cells. Immunol. Lett. 2008, 115, 105–109, doi:10.1016/j.imlet.2007.10.006.
[13]
Lao, Q.; Fukamachi, T.; Saito, H.; Kuge, O.; Nishijima, M.; Kobayashi, H. Requirement of an IκB-β COOH terminal region protein for acidic-adaptation in CHO cells. J. Cell Physiol. 2006, 207, 238–243, doi:10.1002/jcp.20558.
[14]
Fukamachi, T.; Lao, Q.; Okamura, S.; Saito, H.; Kobayashi, H. CTIB (C-Terminus protein of IκB-β): a novel factor required for acidic adaptation. Adv. Exp. Med. Biol. 2006, 584, 219–228.
[15]
Wang, X.; Hatatani, K.; Sun, Y.; Fukamachi, T.; Saito, H.; Kobayashi, H. TCR signaling via ZAP-70 induced by CD3 stimulation is more active under acidic conditions. J. Cell Sci. Ther. 2012, S16, 1.
[16]
Souza, R.F.; Shewmake, K.; Pearson, S.; Sarosi, G.A., Jr.; Feagins, L.A.; Ramirez, R.D.; Terada, L.S.; Spechler, S.J. Acid increases proliferation via ERK and p38 MAPK-mediated increases in cyclooxygenase-2 in Barrett’s adenocarcinoma cells. Am. J. Physiol. Gastrointest. Liver Physiol. 2004, 287, G743–G748, doi:10.1152/ajpgi.00144.2004.
[17]
Kato, Y.; Lambert, C.A.; Colige, A.C.; Mineur, P.; No?l, A.; Frankenne, F.; Foidart, J.M.; Baba, M.; Hata, R.; Miyazaki, K.; et al. Acidic extracellular pH induces matrix metalloproteinase-9 expression in mouse metastatic melanoma cells through the phospholipase D-mitogen-activated protein kinase signaling. J. Biol. Chem. 2005, 280, 10938–10944, doi:10.1074/jbc.M411313200.
[18]
Ihnatko, R.; Kubes, M.; Takacova, M.; Sedlakova, O.; Sedlak, J.; Pastorek, J.; Kopacek, J.; Pastorekova, S. Extracellular acidosis elevates carbonic anhydrase IX in human glioblastoma cells via transcriptional modulation that does not depend on hypoxia. Int. J. Oncol. 2006, 29, 1025–1033.
[19]
Xu, L.; Fukumura, D.; Jain, R.K. Acidic extracellular pH induces vascular endothelial growth factor (VEGF) in human glioblastoma cells via ERK1/2 MAPK signaling pathway: Mechanism of low pH-induced VEGF. J. Biol. Chem. 2002, 277, 11368–11374.
[20]
Elias, A.P.; Dias, S. Microenvironment changes (in pH) affect VEGF alternative splicing. Cancer Microenviron. 2008, 1, 131–139, doi:10.1007/s12307-008-0013-4.
Irizarry, R.A.; Hobbs, B.; Collin, F.; Beazer-Barclay, Y.D.; Antonellis, K.J.; Scherf, U.; Speed, T.P. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 2003, 4, 249–264, doi:10.1093/biostatistics/4.2.249.
[25]
Darnel, J.; Lodish, H.; Baltimore, D. Molecular Cell Biology; Scientific American Books Inc.: New York, NY, USA, 1986.
[26]
Connor, K.M.; Hempel, N.; Nelson, K.K.; Dabiri, G.; Gamarra, A.; Belarmino, J.; van de Water, L.; Mian, B.M.; Melendez, J.A. Manganese superoxide dismutase enhances the invasive and migratory activity of tumor cells. Cancer Res. 2007, 67, 10260–10267, doi:10.1158/0008-5472.CAN-07-1204.
[27]
Lao, Q.; Kuge, O.; Fukamachi, T.; Kakegawa, T.; Saito, H.; Nishijima, M.; Kobayashi, H. An IκB-β COOH terminal region protein is essential for the proliferation of CHO cells under acidic stress. J. Cell Physiol. 2005, 203, 186–192, doi:10.1002/jcp.20221.
[28]
Dahl, C.A.; Schall, R.P.; He, H.L.; Cairns, J.S. Identification of a novel gene expressed in activated natural killer cells and T cells. J. Immunol. 1992, 148, 597–603.
[29]
Kim, S.H.; Han, S.Y.; Azam, T.; Yoon, D.Y.; Dinarello, C.A. Interleukin-32: A cytokine and inducer of TNFα. Immunity 2005, 22, 131–142.
[30]
Mun, S.H.; Kim, J.W.; Nah, S.S.; Ko, N.Y.; Lee, J.H.; Kim, J.D.; Kim, D.K.; Kim, H.S.; Choi, J.D.; Kim, S.H.; et al. Tumor necrosis factor α-induced interleukin-32 is positively regulated via the Syk/protein kinase Cδ/JNK pathway in rheumatoid synovial fibroblasts. Arthritis Rheum. 2009, 60, 678–685, doi:10.1002/art.24299.
[31]
Joosten, L.A.; Netea, M.G.; Kim, S.H. IL-32, a proinflammatory cytokine in rheumatoid arthritis. Proc. Natl. Acad. Sci. USA 2006, 103, 3298–3303, doi:10.1073/pnas.0511233103.
[32]
Nishida, A.; Andoh, A.; Inatomi, O.; Fujiyama, Y. Interleukin-32 expression in the pancreas. J. Biol. Chem. 2009, 284, 17868–17876.
[33]
Castella-Escola, J.; Ojcius, D.M.; LeBoulch, P.; Joulin, V.; Blouquit, Y.; Garel, M.C.; Valentin, C.; Rosa, R.; Climent-Romeo, F.; Cohen-Solal, M. Isolation and characterization of the gene encoding the muscle-specific isozyme of human phosphoglycerate mutase. Gene 1990, 91, 225–232, doi:10.1016/0378-1119(90)90092-6.