|
Molecular Modeling and Simulation Studies of Acyl CoA Synthetaseof MycobacteriumlepraeKeywords: docking , homology modeling , leprosy , M.leprae , molecular , molecular dynamics , ramachandran plot. Abstract: Leprosy or Hansen’s disease is caused by an obligate intracellular pathogen i.e. Mycobacterium leprae. Leprosy is a granulomatous disease of peripheral nerves and mucosa of the upper respiratory tract. This infectious disease results in Leprosy reactions that cause irreversible nerve damage and disabilities. The organism requires minimal set of functional genes for its survival. Most of the genes are involved in biosynthetic and metabolic pathways, so the product of these genes can be aimed for the novel drug target. Acyl CoA Synthetase is an enzyme that participates in fatty acid biosynthesis. The activation of fatty acids by Acyl-CoA Synthetase is the need of de novo lipid biosynthesis, fatty acid catabolism and remodeling of biological membranes. Therefore by emphasizing this protein as a drug target can help in the identification of novel drugs to cure leprosy. A well organized research comprising of analogue based drug design and molecular dynamics plays a major role in obtaining the lead molecules. The bacteria have developed resistance against many of the drugs available in the market. Therefore identification of the novel drug target and potent drug can be helpful in better prevention of the disease.
|