|
BMC Bioinformatics 2006
Utilization of two sample t-test statistics from redundant probe sets to evaluate different probe set algorithms in GeneChip studiesAbstract: We propose the use of the probe set redundancy feature for evaluating the performance of probe set algorithms, and have presented three approaches for analyzing data variance and result bias using two sample t-test statistics from redundant probe sets. These approaches are as follows: 1) analyzing redundant probe set variance based on t-statistic rank order, 2) computing correlation of t-statistics between redundant probe sets, and 3) analyzing the co-occurrence of replicate redundant probe sets representing differentially expressed genes. We applied these approaches to expression summary data generated from three datasets utilizing individual probe set algorithms of MAS5.0, dChip, or RMA. We also utilized combinations of options from the three probe set algorithms. We found that results from the three approaches were similar within each individual expression summary dataset, and were also in good agreement with previously reported findings by others. We also demonstrate the validity of our findings by independent experimental methods.All three proposed approaches allowed us to assess the performance of probe set algorithms using the probe set redundancy feature. The analyses of redundant probe set variance based on t-statistic rank order and correlation of t-statistics between redundant probe sets provide useful tools for data variance analysis, and the co-occurrence of replicate redundant probe sets representing differentially expressed genes allows estimation of result bias. The results also suggest that individual probe set algorithms have dataset-specific performance.One of the most promising tools available today to researchers in the life sciences is high-density oligonucleotide array technology [1]. Denoted as GeneChips?, high-density oligonucleotide arrays allow one to monitor the relative expression of tens of thousands of genes in a single assay. Upon its introduction within the last decade, GeneChip technology, together with cDNA microarray technology [2
|