全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Manganese-Nanoparticles Substitutions on the Vanadium Sites of Bi-Sr-Vanadate Aurivillius Ceramics

DOI: 10.1155/2012/751676

Full-Text   Cite this paper   Add to My Lib

Abstract:

The aurivillius phase of Mn-substituted samples with general formula where and 0.6 mole were prepared by solid-state reaction technique and ceramics procedures. The X-ray structural measurement analysis confirmed the formation of single-phase-layered hexagonal structure which is observed in all samples. The thermal stability and phase change of the green powders were studied by thermogravimetric analysis (TGA) and differential thermal analysis (DTA). SEM revealed that the average grain size increases with increasing Mn content. The infrared absorption spectra recorded a series of vibrational modes within the range of 400–1600?cm?1 were investigated. The present work also studied the effect of Mn-doping concentration interactions on both DC-electrical conductivity and ESR spectra. 1. Introduction Ferroelectic aurivillius ceramic has attracted the attention of many investigators due to its potential applications in electronics devices (DRAMs) [1–3]. Recently, there is interest in the study of bismuth-layered-structured ferroelectric materials for memory applications; one of the bismuth-layered-structured compounds is a promising candidate for ferroelectric random access memories (FRAM) as it has very little fatigue under polarization switching [4]. The study of microstructure of the SBN thin film is very important [5, 6]. The antiphase boundaries [APBs] are important factors of Bi-layered perovskite properties [7–9]. The layered crystal structure compounds have an anisotropic lamellar morphology, in which the major faces of the lamellar are perpendicular to the c-axis of the structure. In order to use moderate sintering temperatures so as to prevent compositional changes and exaggerated grain growth, and to attain low porosity, the ceramics of these compositions must be prepared by hot pressing technique [10–13]. Several bismuth-layered perovskites such as strontium bismuth niobate [SBN] [12] and strontium bismuth tantalate [SBT] [14] have been shown to exhibit much elongated fatigue durability and are capable of withstanding 1012 erase and rewrite operations. It is found that the substitution of niobium with vanadium in SrBi2Nb2O9 leads to enhancement of ferroelectric properties together with a lowered processing temperature [15, 16]. It has recently been reported that there occurs (BiFeO3) doped Sr Bi Nb [17]. Most of the work of the layered perovskite Sr Bi oxides reported on the improvement of the dielectric and ferroelectric properties is based on A-site substitution [18, 19]. For example, the replacement of Sr2+ ions by a smaller cations Ca2+

References

[1]  J. F. Scott and C. A. Paz de Araujo, “Ferroelectric memories,” Science, vol. 246, pp. 1400–1405, 1989.
[2]  G. H. Haertling, “Ferroelectric thin films for electronic applications,” Journal of Vacuum Science & Technology A, vol. 9, no. 3, article 414, 7 pages, 1991.
[3]  J. J. Lee, C. L. Thio, and S. B. Desu, “Electrode contacts on ferroelectric Pb(ZrxTi1?x)O3 and SrBi2Ta2O9 thin films and their influence on fatigue properties,” Journal of Applied Physics, vol. 78, no. 8, article 5073, 6 pages, 1995.
[4]  C. A. Pazde Araujo, J. D. Cuchlaro, L. D. McMillan, M. C. Scott, and J. F. Scott, “Fatigue-free ferroelectric capacitors with platinum electrodes,” Nature, vol. 374, no. 6523, pp. 627–629, 1995.
[5]  V. Volov, E. Vasco, P. Duran-Martin, and C. Zaldo, “Preferential orientation of modified SrBi2Nb2O9 ferroelectric thin films prepared by pulsed laser deposition,” Applied Physics A, vol. 69, no. 7, pp. 833–836, 1999.
[6]  J. R. Duclere, M. G. Viry, A. Pen-in, et al., “Composition control of SBN thin films deposited by PLD on various substrates,” International Journal of Inorganic Chemistry, vol. 3, no. 8, pp. 1133–1135, 2001.
[7]  A. Boulle, C. Legrand, R. Guinebretiere, J. P. Mercurio, and A. Dauger, “X-Ray diffraction line broadening by stacking faults in SrBi2Nb2O9/SrTiO3 epitaxial thin films,” Thin Solid Films, vol. 391, no. 1, pp. 42–46, 2001.
[8]  X. Du and I. W. Chen, “Ferroelectric thin films of bismuth-containing layered perovskites: part II, PbBi2Nb2O9,” Journal of the American Ceramic Society, vol. 81, no. 12, pp. 3260–3264, 1998.
[9]  X. H. Zhu, A. D. Li, D. Wu, T. Zhu, Z. G. Liu, and N. B. Ming, “High-resolution electron microscopy investigations on stacking faults in SrBi2Ta2O9 ferroelectric thin films,” Applied Physics Letters, vol. 78, no. 7, pp. 973–976, 2001.
[10]  P. Duran-martin, Substitutions effects on different sites of aurrivillius structure, Ph.D. thesis, University of Autonoma de Madrid, Madrid, Spain, 1997.
[11]  P. Duran-Martin, A. Castro, P. Ramos, P. Millan, and B. Jimenez, “Ferroelectric anisotropy in layered compound type of Bi1.75Te0.25Sr0.75Na0.25Nb2O9,” Boletines Sociedad de Cerámica y Vidrio, vol. 37, pp. 143–147, 1998.
[12]  K. Watanabe, M. Tanaka, E. Sumitomo, K. Katori, H. Yagi, and J. F. Scott, “Spin-coated ferroelectric SrBi2Nb2O9 thin films,” Applied Physics Letters, vol. 73, no. 1, pp. 126–129, 1998.
[13]  J. H. Yi, P. Thomas, M. Manier, J. P. Mercurio, I. Jauberteau, and R. Guinebretiere, “SrBi2Nb2O9 ferroelectric powders and thin films prepared by Sol-Gel,” Journal of Sol-Gel Science and Technology, vol. 13, no. 1–3, pp. 885–888, 1998.
[14]  M. Mitsuya, K. Ishikawa, N. Nukaga, and H. Funakubo, “Preparation and characterization of SrBi2(Ta1-xNbx)2O9 thin films by metalorganic chemical vapor deposition from two organometallic source bottles,” Japanese Journal of Applied Physics, vol. 39, pp. L620–L622, 2000.
[15]  Y. Wu and G. Cao, “Ferroelectric and dielectric properties of strontium bismuth niobate vanadates,” Journal of Materials Research, vol. 15, no. 7, pp. 1583–1590, 2000.
[16]  Y. Wu and G. Z. Cao, “Enhanced ferroelectric properties and lowered processing temperatures of strontium bismuth niobates with vanadium doping,” Applied Physics Letters, vol. 75, no. 17, article 2650, 3 pages, 1999.
[17]  H. Gu, J. M. Xue, and J. Wang, “Significant dielectric enhancement in 0.3BiFeO3–0.7SrBi2Nb2O9,” Applied Physics Letters, vol. 79, no. 13, article 2061, 3 pages, 2001.
[18]  Y. Shimakawa, Y. Kubo, Y. Nakagawa, T. Kamiyama, H. Asano, and F. Izumi, “Crystal structures and ferroelectric properties of SrBi2Ta2O9 and Sr0.8Bi2.2Ta2O9,” Applied Physics Letters, vol. 74, no. 13, article 1904, 3 pages, 1999.
[19]  J. K. Lee, B. Park, K. S. Hong, et al., “Effect of excess Bi2O3 on the ferroelectric properties of SrBi2Ta2O9 ceramics,” Journal of Applied Physics, vol. 88, no. 5, article 2825, 5 pages, 2000.
[20]  Y. Shimakawa, Y. Kubo, Y. Nakagawa, T. Kamiyama, H. Asano, and F. Izumi, “Crystal structure and ferroelectric properties of ABi2Ta2O9(A=Ca, Sr, and Ba),” Physical Review B, vol. 61, no. 10, pp. 6559–6564, 2000.
[21]  I. Coondoo, A. K. Jha, and S. K. Agarwal, “Structural, dielectric and electrical studies in tungsten doped SrBi2Ta2O9 ferroelectric ceramics,” Ceramics International, vol. 33, no. 1, pp. 41–47, 2007.
[22]  R. D. Shannon and C. T. Prewitt, “Effective ionic radii in oxides and fluorides,” Acta Crystallographica, vol. 25, pp. 925–946, 1969.
[23]  H. Taguchi, A. Shimizu, M. Nagao, and H. Kido, “Synthesis and characterization of four-layered hexagonal (Sr1-xBax)MnO3 (0.0 ≤ x ≤ 0.5),” Journal of the Ceramic Society of Japan, vol. 115, pp. 77–80, 2007.
[24]  T. Matsuoka, Y. Matsuo, H. Sasaki, and S. Hayagawa, “PTCR behavior of BaTiO3 with Nb2O5 and MnO2Additives,” Journal of the American Ceramic Society, vol. 55, no. 2, p. 108, 1972.
[25]  H. Ueoka, “The doping effects of transition elements on the PTC anomaly of semiconductive ferroelectric ceramics,” Ferroelectrics, vol. 7, no. 1, pp. 351–353, 1974.
[26]  J. H. Choi, S. I. Lee, H. J. Sung, B.J. Park, and S. M. Jhon, “Comment on “preparation and electrorheological property of rare earth modified amorphous BaxSr1-xTiO3 gel electrorheological fluid”,” Journal of Colloid and Interface Science, vol. 295, no. 1, pp. 291–293, 2006.
[27]  S. J. Liu and N. G. Fan, “Thermal stability and influence of 3d-metals on aurrivilius phase,” Chinese Journal of Chemical Physics, p. 367, 2006.
[28]  E. Masiukait?, J. Banys, R. Sobiestianskas, T. Ramoska, V. A. Khomchenko, and D. A. Kiselev, “Conductivity investigations of Aurivillius-type Bi2.5Gd1.5Ti3O12 ceramics,” Solid State Ionics, vol. 188, no. 1, pp. 50–52, 2011.
[29]  B. Zulhadjri, B. Prijamboedi, A. A. Nugroho et al., “Aurivillius phases of PbBi4Ti4O15 doped with Mn3+ synthesized by molten salt technique: structure, dielectric, and magnetic properties,” Journal of Solid State Chemistry, vol. 184, no. 5, pp. 1318–1323, 2011.
[30]  A. Chakrabarti and J. Bera, “Structure and ferroelectric properties of BaBi3.8M0.2(Ti3.8Nb0.2)O15 (M=Mg, Ca, Sr and Ba) ceramics,” Physica B, vol. 406, no. 14, pp. 2891–2897, 2011.
[31]  M. Mazurek, E. Jartych, A. Lisińska-Czekaj, D. Czekaj, and D. Oleszak, “Structure and hyperfine interactions of Bi9Ti3Fe5O27 multiferroic ceramic prepared by sintering and mechanical alloying methods,” Journal of Non-Crystalline Solids, vol. 356, no. 37–40, pp. 1994–1997, 2010.
[32]  N. L. Amsei, A. Z. Simoes, A. A. Cavalheiro, S. M. Zanetti, E. Longo, and J. A. Varela, “Structural and microstructural characterization of SrBi2(Ta0.5Nb0.48W0.02)2O9 powders,” Journal of Alloys and Compounds, vol. 454, no. 1-2, pp. 61–65, 2008.
[33]  I. Onyszkieuicz, P. Czarnecki, R. Mienas, and S. Robaszkiewiez, “Spectroscopic studies of the high-Tc superconducting cuprate perovskites,” Physica, vol. 147, no. 2-3, pp. 166–174, 1988.
[34]  T. Hidaka, “Electronic instability of the Γ15 phonon in BaTiO3,” Physical Review B, vol. 20, pp. 2769–2773, 1979.
[35]  A. Simpson and E. Robert, Introductory Electronics for Scientists & Engineers, Allyn and Bacon, 2nd edition, 1987.
[36]  N. Sharma, C. D. Ling, G. E. Wrighter, P. Y. Chen, B. J. Kennedy, and P. L. Lee, “Three-layer Aurivillius phases containing magnetic transition metal cations: Bi2-xSr2+x(Nb,Ta)2+xM1-xO12, , Ir4+, Mn4+, ,” Journal of Solid State Chemistry, vol. 180, no. 1, pp. 370–376, 2007.
[37]  S. R. Kokare, S. A. Pawar, N. T. Padal, and P.B. Joshi, “Studies on compensating valency substituted BaTi(1-x)Mnx/2Nbx/2O3 ceramics,” Bulletin of Material Science, vol. 42, no. 2, pp. 243–248, 2001.
[38]  N. Syam and K. B. Varma, “Nanocrystallization of SrBi2Nb2O9 from glasses in the system Li2B4O7SrOBi2O3Nb2O5,” Materials Science and Engineering B, vol. 90, no. 3, pp. 246–253, 2002.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133