全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Multiple organism algorithm for finding ultraconserved elements

DOI: 10.1186/1471-2105-9-15

Full-Text   Cite this paper   Add to My Lib

Abstract:

We describe an algorithm and provide freely available software which can find all of the ultraconserved sequences between genomes of multiple organisms. Our algorithm takes a combinatorial approach that finds all sequences without requiring the genomes to be aligned. The algorithm is significantly faster than BLAST and is designed to handle very large genomes efficiently. We ran our algorithm on several large comparative analyses to evaluate its effectiveness; one compared 17 vertebrate genomes where we find 123 ultraconserved elements longer than 40 bps shared by all of the organisms, and another compared the human body louse, Pediculus humanus humanus, against itself and select insects to find thousands of non-coding, potentially functional sequences.Whole genome comparative analysis for multiple organisms is both feasible and desirable in our search for biological knowledge. We argue that bioinformatic programs should be forward thinking by assuming analysis on multiple (and possibly large) genomes in the design and implementation of algorithms. Our algorithm shows how a compromise design with a trade-off of disk space versus memory space allows for efficient computation while only requiring modest computer resources, and at the same time providing benefits not available with other software.The availability of whole genome assemblies [1-3] and the development of bioinformatics tools and interfaces [4,5] for their analysis, enable data-mining and comparison of these large genomic datasets. Ultraconserved elements are nucleotide or protein sequences with 100% identity (no mismatches, insertions, or deletions) in the same organism or between two or more organisms. A recent comparison of several vertebrate genomes demonstrates that, in addition to coding, non-coding sequences can be highly conserved between species [6]. Approximately 5% of the human genome is under negative selection, indicating conservation of sequence due to functional necessity. These functional r

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133