|
BMC Bioinformatics 2007
Detecting multivariate differentially expressed genesAbstract: We have developed a novel algorithm for detecting multivariate expression patterns, named Recursive Independence Test (RIT). This algorithm generalizes differential expression testing to more complex expression patterns, while still including genes found by the univariate approach. We prove that RIT is consistent and controls error rates for small sample sizes. Simulation studies confirm that RIT offers more power than univariate differential expression analysis when multivariate effects are present. We apply RIT to gene expression data sets from diabetes and cancer studies, revealing several putative disease genes that were not detected by univariate differential expression analysis.The proposed RIT algorithm increases the power of gene expression analysis by considering multivariate effects while retaining error rate control, and may be useful when conventional differential expression tests yield few findings.The problem of detecting a change in expression between two biological states, such as healthy vs. diseased, is central to microarray data analysis. There are two main approaches to this problem: statistical difference tests [1] or feature selection by machine learning techniques [2]. The former alternative provides a solid statistical foundation and allows proper control of false positive rates, but is limited to detecting differences in the expression level of single genes. We herein refer to this as univariate differential expression (UDE). The machine learning techniques on the other hand can potentially discover more complex, multivariate effects, herein referred to as multivariate differential expression (MDE). Figure 1 provides some examples illustrating the distinction between UDE and MDE. However, machine learning techniques usually aim to discover small, predictive gene sets and do not control error rates. Consequently, the gene lists obtained are often unreliable [3,4]. Thus, there is a need for novel methods that combine the best of the two worlds
|