|
BMC Bioinformatics 2008
A semiparametric modeling framework for potential biomarker discovery and the development of metabonomic profilesAbstract: In the present study a novel semi-parametric approach has been developed to distinguish urinary metabolic profiles in a group of traumatic patients from those of a control group consisting of normal individuals. Data sets obtained from the replicates of a single subject were used to develop a functional profile through Dirichlet mixture of beta distribution. This functional profile is flexible enough to accommodate variability of the instrument and the inherent variability of each individual, thus simultaneously addressing different sources of systematic error. To address instrument variability, all data sets were analyzed in replicate, an important issue ignored by most studies in the past. Different model comparisons were performed to select the best model for each subject. The m/z values in the window of the irregular pattern are then further recommended for possible biomarker discovery.To the best of our knowledge this is the very first attempt to model the physical process behind the time-of flight mass spectrometry. Most of the state of the art techniques does not take these physical principles in consideration while modeling such data. The proposed modeling process will apply as long as the basic physical principle presented in this paper is valid. Notably we have confined our present work mostly within the modeling aspect. Nevertheless clinical validation of our recommended list of potential biomarkers will be required. Hence, we have termed our modeling approach as a "framework" for further work.Mass spectrometry is an analytical technique for identifying compounds based on their mass to charge (m/z) ratio. It can also be used to quantify the amount of a compound in that the abundance of ions at a given m/z is proportional to the amount of the correlative compound present. With recent advances in this technology a new direction in bioinformatics has emerged for the identification of biomarker patterns that can be used for diagnosis, prognosis or monitoring
|