全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A new method for class prediction based on signed-rank algorithms applied to Affymetrix? microarray experiments

DOI: 10.1186/1471-2105-9-16

Full-Text   Cite this paper   Add to My Lib

Abstract:

After a call-based data reduction step to filter out non class-discriminative probe sets, the gene list obtained was reduced to a predictor with correction for multiple testing by iterative deletion of probe sets that sequentially improve inter-class comparisons and their significance. The error rate of the method was determined using leave-one-out and 5-fold cross-validation. It was successfully applied to (i) determine a sex predictor with the normal donor group classifying gender with no error in all patient groups except for male MM samples with a Y chromosome deletion, (ii) predict the immunoglobulin light and heavy chains expressed by the malignant myeloma clones of the validation group and (iii) predict sex, light and heavy chain nature for every new patient. Finally, this method was shown powerful when compared to the popular classification method Prediction Analysis of Microarray (PAM).This normalization-free method is routinely used for quality control and correction of collection errors in patient reports to clinicians. It can be easily extended to multiple class prediction suitable with clinical groups, and looks particularly promising through international cooperative projects like the "Microarray Quality Control project of US FDA" MAQC as a predictive classifier for diagnostic, prognostic and response to treatment. Finally, it can be used as a powerful tool to mine published data generated on Affymetrix systems and more generally classify samples with binary feature values.In allowing simultaneous quantification of the expression level of thousands of genes, DNA chip technology is part of the revolution in molecular biology towards a comprehensive understanding of cell biology at the genome scale, with considerable stake in improving patient classification [1] and treatment. But the huge mass of information from chips has generated a number of difficulties in interpreting results, accentuated by both biological and technical sources of variability [2-5

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133