|
BMC Bioinformatics 2008
A comparison of machine learning algorithms for chemical toxicity classification using a simulated multi-scale data modelAbstract: The classification performance of Artificial Neural Networks (ANN), K-Nearest Neighbors (KNN), Linear Discriminant Analysis (LDA), Na?ve Bayes (NB), Recursive Partitioning and Regression Trees (RPART), and Support Vector Machines (SVM) in the presence and absence of filter-based feature selection was analyzed using K-way cross-validation testing and independent validation on simulated in vitro assay data sets with varying levels of model complexity, number of irrelevant features and measurement noise. While the prediction accuracy of all ML methods decreased as non-causal (irrelevant) features were added, some ML methods performed better than others. In the limit of using a large number of features, ANN and SVM were always in the top performing set of methods while RPART and KNN (k = 5) were always in the poorest performing set. The addition of measurement noise and irrelevant features decreased the classification accuracy of all ML methods, with LDA suffering the greatest performance degradation. LDA performance is especially sensitive to the use of feature selection. Filter-based feature selection generally improved performance, most strikingly for LDA.We have developed a novel simulation model to evaluate machine learning methods for the analysis of data sets in which in vitro bioassay data is being used to predict in vivo chemical toxicology. From our analysis, we can recommend that several ML methods, most notably SVM and ANN, are good candidates for use in real world applications in this area.A daunting challenge faced by environmental regulators in the U.S. and other countries is the requirement that they evaluate the potential toxicity of a large number of unique chemicals that are currently in common use (in the range of 10,000–30,000) but for which little toxicology information is available. The time and cost required for traditional toxicity testing approaches, coupled with the desire to reduce animal use is driving the search for new toxicity prediction
|