|
BMC Bioinformatics 2008
Missing value imputation for microarray gene expression data using histone acetylation informationAbstract: The paper explores the feasibility of doing missing value imputation with the help of gene regulatory mechanism. An imputation framework called histone acetylation information aided imputation method (HAIimpute method) is presented. It incorporates the histone acetylation information into the conventional KNN(k-nearest neighbor) and LLS(local least square) imputation algorithms for final prediction of the missing values. The experimental results indicated that the use of acetylation information can provide significant improvements in microarray imputation accuracy. The HAIimpute methods consistently improve the widely used methods such as KNN and LLS in terms of normalized root mean squared error (NRMSE). Meanwhile, the genes imputed by HAIimpute methods are more correlated with the original complete genes in terms of Pearson correlation coefficients. Furthermore, the proposed methods also outperform GOimpute, which is one of the existing related methods that use the functional similarity as the external information.We demonstrated that the using of histone acetylation information could greatly improve the performance of the imputation especially at high missing percentages. This idea can be generalized to various imputation methods to facilitate the performance. Moreover, with more knowledge accumulated on gene regulatory mechanism in addition to histone acetylation, the performance of our approach can be further improved and verified.DNA microarray technology can simultaneously measure the mRNA levels of thousands of genes under certain experiments. It gives a global overview of gene expression profiles in particular cells or tissues, so it has become one of the most prominent tools in functional genomics research. The analysis of gene expression profiles is aim to discover a broad range of biological disciplines and predict a clinical state or other effects such as cancer classification and relevant genes identification, mechanism investigation and cancer prognos
|