|
BMC Bioinformatics 2008
Signature Evaluation Tool (SET): a Java-based tool to evaluate and visualize the sample discrimination abilities of gene expression signaturesAbstract: Signature Evaluation Tool (SET) is a Java-based tool adopting the Golub's weighted voting algorithm as well as incorporating the visual presentation of prediction strength for each array sample. SET provides a flexible and easy-to-follow platform to evaluate the discrimination power of a gene signature. Here, we demonstrated the application of SET for several purposes: (1) for signatures consisting of a large number of genes, SET offers the ability to rapidly narrow down the number of genes; (2) for a given signature (from third party analyses or user-defined), SET can re-evaluate and re-adjust its discrimination power by selecting/de-selecting genes repeatedly; (3) for multiple microarray datasets, SET can evaluate the classification capability of a signature among datasets; and (4) by providing a module to visualize the prediction strength for each sample, SET allows users to re-evaluate the discrimination power on mis-grouped or less-certain samples. Information obtained from the above applications could be useful in prognostic analyses or clinical management decisions.Here we present SET to evaluate and visualize the sample-discrimination ability of a given gene expression signature. This tool provides a filtration function for signature identification and lies between clinical analyses and class prediction (or feature selection) tools. The simplicity, flexibility and brevity of SET could make it an invaluable tool for marker identification in clinical research.Gene expression profiling based on microarray technology has been applied widely on monitoring global transcriptome changes in biological samples. In cancer research, one of the major microarray applications is to identify genes, or features, whose expression patterns can discriminate samples with distinct states (usually defined by the phenotype of samples such as primary or metastatic tumour). These identified genes form an expression signature that can be used to assist clinical management decisions su
|