全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Analyzing M-CSF dependent monocyte/macrophage differentiation: Expression modes and meta-modes derived from an independent component analysis

DOI: 10.1186/1471-2105-9-100

Full-Text   Cite this paper   Add to My Lib

Abstract:

Statistically independent gene expression modes (GEM) were extracted from observed gene expression signatures (GES) through ICA of different microarray experiments. From each GEM we deduced a group of genes, henceforth called sub-mode. These sub-modes were further analyzed with different database query and literature mining tools and then combined to form so called meta-modes. With them we performed a knowledge-based pathway analysis and reconstructed a well known signal cascade.We show that ICA is an appropriate tool to uncover underlying biological mechanisms from microarray data. Most of the well known pathways of M-CSF dependent monocyte to macrophage differentiation can be identified by this unsupervised microarray data analysis. Moreover, recent research results like the involvement of proliferation associated cellular mechanisms during macrophage differentiation can be corroborated.Since microarray technology has become one of the most popular approaches in the field of gene expression analysis, numerous statistical methods have been used to provide insights into the biological mechanisms of gene expression regulation. The high dimension of expression data and the complexity of the regulatory mechanisms leading to transcriptional networks still forces statisticians and bioinformaticians to examine available methods and to develop new sophisticated approaches. However, there are already appropriate methods using different approaches to examine the underlying biological mechanisms determining the gene expression signatures and profiles measured by microarray experiments. Supervised methods using prior knowledge like Gene Set Enrichment Analysis (GSEA) deliver useful results under certain conditions. But there is still a lack of reliable data needed for non-classical analysis. Widely used unsupervised approaches, like hierarchical clustering and k-means clustering, use correlations or other distance or similarity measures to identify genes with similar behavior

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133