全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Impedance cardiography: Pulsatile blood flow and the biophysical and electrodynamic basis for the stroke volume equations

DOI: 10.5617/jeb.51

Keywords: Impedance cardiography , stroke volume , cardiac output , dZ/dtmax , acceleration , volume conductor , extravascular lung water

Full-Text   Cite this paper   Add to My Lib

Abstract:

Impedance cardiography (ICG) is a branch of bioimpedance pimarily concerned with the determination of left ventricular stroke volume (SV). As implemented, using the transthoracic approach, the technique involves applying a current field longitudinally across a segment of thorax by means of a constant magnitude, high frequency, low amplitude alternating current (AC). By Ohm's Law, the voltage difference measured within the current field is proportional to the electrical impedance Z (Ω). Without ventilatory or cardiac activity, Z is known as the transthoracic, static base impedance Z0. Upon ventricular ejection, a characteristic time dependent cardiac-synchronous pulsatile impedance change is obtained, ΔZ(t), which, when placed electrically in parallel with Z0, constitutes the time-variable total transthoracic impedance Z(t). ΔZ(t) represents a dual-element composite waveform, which comprises both the radially-oriented volumetric expansion of and axially-directed forward blood flow within both great thoracic arteries. In its majority, however, ΔZ(t) is known to primarily emanate from the ascending aorta. Conceptually, commonly implemented methods assume a volumetric origin for the peak systolic upslope of ΔZ(t), (i.e. dZ/dtmax), with the presumed units of Ω·s-1. A recently introduced method assumes the rapid ejection of forward flowing blood in earliest systole causes significant changes in the velocity-induced blood resistivity variation (Δρb(t), Ωcm·s-1), and it is the peak rate of change of the blood resistivity variation dρb(t)/dtmax (Ωcm·s-2) that is the origin of dZ/dtmax. As a consequence of dZ/dtmax peaking in the time domain of peak aortic blood acceleration, dv/dtmax (cm·s-2), it is suggested that dZ/dtmax is an ohmic mean acceleration analog (Ω·s-2) and not a mean flow or velocity surrogate as generally assumed. As conceptualized, the normalized value, dZ/dtmax/Z0, is a dimensionless ohmic mean acceleration equivalent (s-2), and more precisely, the electro-dynamic equivalent of peak aortic reduced average blood acceleration (PARABA, d/dtmax/R, s-2). As necessary for stroke volume calculation, dZ/dtmax/Z0 must undergo square root transformation to yield an ohmic mean flow velocity equivalent. To compute SV, the square root of the dimensionless ohmic mean acceleration equivalent ([dZ/dtmax/Z0]0.5, s-1) is multiplied by a volume of electrically participating thoracic tissue (VEPT, mL) and left ventricular ejection time (TLVE, s). To find the bulk volume of the thoracic contents (i.e. VEPT), established methods implement exponential functions of

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133