The proepicardium (PE) is a cluster of cells that forms on the cardiac inflow tract and gives rise to the epicardium and connective tissue and largely contributes to the coronary vasculature. In many vertebrates, the PE undergoes left-right asymmetrical development. While PE cells and marker genes can be initially found on both sides, only the right-sided PE will fully develop and ultimately deliver cells to the heart. Several signalling inputs, like FGF and BMP signals, are involved in PE induction in the lateral plate mesoderm, as well as during inflow tract formation and, also, control asymmetric PE development. These signalling events will be put into the context of embryonic left-right asymmetry determination. Finally, it will be discussed whether PE development may serve as a readout for asymmetric inflow tract morphogenesis.
References
[1]
Nakamura, T.; Hamada, H. Left-right patterning: conserved and divergent mechanisms. Development 2012, 139, 3257–3262, doi:10.1242/dev.061606.
[2]
Schlueter, J.; Brand, T. Left-right axis development: Examples of similar and divergent strategies to generate asymmetric morphogenesis in chick and mouse embryos. Cytogenet. Genome Res. 2007, 117, 256–267, doi:10.1159/000103187.
Ramsdell, A.F. Left-right asymmetry and congenital cardiac defects: Getting to the heart of the matter in vertebrate left-right axis determination. Dev. Biol. 2005, 288, 1–20, doi:10.1016/j.ydbio.2005.07.038.
[5]
Kurosawa, H.; Kawada, N. The conduction system in heterotaxy. World J. Pediatr. Congenit. Heart Surg. 2011, 2, 275–277, doi:10.1177/2150135110396732.
[6]
Vandenberg, L.N.; Levin, M. A unified model for left-right asymmetry? Comparison and synthesis of molecular models of embryonic laterality. Dev. Biol. 2013, 379, 1–15, doi:10.1016/j.ydbio.2013.03.021.
[7]
Levin, M.; Palmer, A.R. Left-right patterning from the inside out: Widespread evidence for intracellular control. Bioessays 2007, 29, 271–287, doi:10.1002/bies.20545.
[8]
Gros, J.; Feistel, K.; Viebahn, C.; Blum, M.; Tabin, C.J. Cell movements at Hensen's node establish left/right asymmetric gene expression in the chick. Science 2009, 324, 941–944, doi:10.1126/science.1172478.
[9]
Gritsman, K.; Talbot, W.S.; Schier, A.F. Nodal signaling patterns the organizer. Development 2000, 127, 921–932.
[10]
Logan, M.; Pagan-Westphal, S.M.; Smith, D.M.; Paganessi, L.; Tabin, C.J. The transcription factor Pitx2 mediates situs-specific morphogenesis in response to left-right asymmetric signals. Cell 1998, 94, 307–317, doi:10.1016/S0092-8674(00)81474-9.
[11]
Boettger, T.; Wittler, L.; Kessel, M. FGF8 functions in the specification of the right body side of the chick. Curr. Biol. 1999, 9, 277–280, doi:10.1016/S0960-9822(99)80119-5.
[12]
Patel, K.; Isaac, A.; Cooke, J. Nodal signalling and the roles of the transcription factors SnR and Pitx2 in vertebrate left-right asymmetry. Curr. Biol. 1999, 9, 609–612, doi:10.1016/S0960-9822(99)80267-X.
[13]
Fukumoto, T.; Kema, I.P.; Levin, M. Serotonin signaling is a very early step in patterning of the left-right axis in chick and frog embryos. Curr. Biol. 2005, 15, 794–803, doi:10.1016/j.cub.2005.03.044.
[14]
Davis, N.M.; Kurpios, N.A.; Sun, X.; Gros, J.; Martin, J.F.; Tabin, C.J. The chirality of gut rotation derives from left-right asymmetric changes in the architecture of the dorsal mesentery. Dev. Cell. 2008, 15, 134–145, doi:10.1016/j.devcel.2008.05.001.
[15]
Horne-Badovinac, S.; Rebagliati, M.; Stainier, D.Y. A cellular framework for gut-looping morphogenesis in zebrafish. Science 2003, 302, 662–665, doi:10.1126/science.1085397.
[16]
Bakkers, J.; Verhoeven, M.C.; Abdelilah-Seyfried, S. Shaping the zebrafish heart: From left-right axis specification to epithelial tissue morphogenesis. Dev. Biol. 2009, 330, 213–220, doi:10.1016/j.ydbio.2009.04.011.
[17]
Veerkamp, J.; Rudolph, F.; Cseresnyes, Z.; Priller, F.; Otten, C.; Renz, M.; Schaefer, L.; Abdelilah-Seyfried, S. Unilateral dampening of Bmp activity by nodal generates cardiac left-right asymmetry. Dev. Cell. 2013, 24, 660–667, doi:10.1016/j.devcel.2013.01.026.
[18]
Lenhart, K.F.; Holtzman, N.G.; Williams, J.R.; Burdine, R.D. Integration of nodal and BMP signals in the heart requires FoxH1 to create left-right differences in cell migration rates that direct cardiac asymmetry. PLoS Genet. 2013, 9, e1003109, doi:10.1371/journal.pgen.1003109.
[19]
Mikawa, T.; Gourdie, R.G. Pericardial mesoderm generates a population of coronary smooth muscle cells migrating into the heart along with ingrowth of the epicardial organ. Dev. Biol. 1996, 174, 221–232, doi:10.1006/dbio.1996.0068.
[20]
Nahirney, P.C.; Mikawa, T.; Fischman, D.A. Evidence for an extracellular matrix bridge guiding proepicardial cell migration to the myocardium of chick embryos. Dev. Dyn. 2003, 227, 511–523, doi:10.1002/dvdy.10335.
[21]
M?nner, J. Does the subepicardial mesenchyme contribute myocardioblasts to the myocardium of the chick embryo heart? A quail-chick chimera study tracing the fate of the epicardial primordium. Anat. Rec. 1999, 255, 212–226, doi:10.1002/(SICI)1097-0185(19990601)255:2<212::AID-AR11>3.0.CO;2-X.
[22]
Manner, J.; Schlueter, J.; Brand, T. Experimental analyses of the function of the proepicardium using a new microsurgical procedure to induce loss-of-proepicardial-function in chick embryos. Dev. Dyn. 2005, 233, 1454–1463, doi:10.1002/dvdy.20487.
[23]
Schlueter, J.; Manner, J.; Brand, T. BMP is an important regulator of proepicardial identity in the chick embryo. Dev. Biol. 2006, 295, 546–558, doi:10.1016/j.ydbio.2006.03.036.
[24]
Torlopp, A.; Schlueter, J.; Brand, T. Role of fibroblast growth factor signaling during proepicardium formation in the chick embryo. Dev. Dyn. 2010, 239, 2393–2403, doi:10.1002/dvdy.22384.
[25]
van Wijk, B.; van den Berg, G.; Abu-Issa, R.; Barnett, P.; van der Velden, S.; Schmidt, M.; Ruijter, J.M.; Kirby, M.L.; Moorman, A.F.; van den Hoff, M.J. Epicardium and myocardium separate from a common precursor pool by crosstalk between bone morphogenetic protein-and fibroblast growth factor-signaling pathways. Circ. Res. 2009, 105, 431–441, doi:10.1161/CIRCRESAHA.109.203083.
[26]
Kruithof, B.P.; van Wijk, B.; Somi, S.; Kruithof-de Julio, M.; Pérez Pomares, J.M.; Weesie, F.; Wessels, A.; Moorman, A.F.; van den Hoff, M.J. BMP and FGF regulate the differentiation of multipotential pericardial mesoderm into the myocardial or epicardial lineage. Dev. Biol. 2006, 295, 507–522, doi:10.1016/j.ydbio.2006.03.033.
[27]
Schlueter, J.; Brand, T. A right-sided pathway involving FGF8/Snai1 controls asymmetric development of the proepicardium in the chick embryo. Proc. Natl. Acad. Sci. USA 2009, 106, 7485–7490, doi:10.1073/pnas.0811944106.
[28]
Schlueter, J.; Brand, T. Epicardial progenitor cells in cardiac development and regeneration. J. Cardiovasc. Transl. Res. 2012, 5, 641–653, doi:10.1007/s12265-012-9377-4.
[29]
M?nner, J.; Perez-Pomares, J.M.; Macias, D.; Munoz-Chapuli, R. The origin, formation and developmental significance of the epicardium: a review. Cells Tissues Organs 2001, 169, 89–103, doi:10.1159/000047867.
[30]
Katz, T.C.; Singh, M.K.; Degenhardt, K.; Rivera-Feliciano, J.; Johnson, R.L.; Epstein, J.A.; Tabin, C.J. Distinct compartments of the proepicardial organ give rise to coronary vascular endothelial cells. Dev. Cell. 2012, 22, 639–650, doi:10.1016/j.devcel.2012.01.012.
[31]
Cossette, S.; Misra, R. The identification of different endothelial cell populations within the mouse proepicardium. Dev. Dyn. 2011, 240, 2344–2353, doi:10.1002/dvdy.22724.
[32]
Perez-Pomares, J.M.; Carmona, R.; Gonzalez-Iriarte, M.; Macias, D.; Guadix, J.A.; Munoz-Chapuli, R. Contribution of mesothelium-derived cells to liver sinusoids in avian embryos. Dev. Dyn. 2004, 229, 465–474, doi:10.1002/dvdy.10455.
[33]
Schulte, I.; Schlueter, J.; Abu-Issa, R.; Brand, T.; Manner, J. Morphological and molecular left-right asymmetries in the development of the proepicardium: A comparative analysis on mouse and chick embryos. Dev. Dyn. 2007, 236, 684–695, doi:10.1002/dvdy.21065.
[34]
Rodgers, L.S.; Lalani, S.; Runyan, R.B.; Camenisch, T.D. Differential growth and multicellular villi direct proepicardial translocation to the developing mouse heart. Dev. Dyn. 2008, 237, 145–152, doi:10.1002/dvdy.21378.
[35]
Hirose, T.; Karasawa, M.; Sugitani, Y.; Fujisawa, M.; Akimoto, K.; Ohno, S.; Noda, T. PAR3 is essential for cyst-mediated epicardial development by establishing apical cortical domains. Development 2006, 133, 1389–1398, doi:10.1242/dev.02294.
[36]
Jahr, M.; Schlueter, J.; Brand, T.; Manner, J. Development of the proepicardium in Xenopus laevis. Dev. Dyn. 2008, 237, 3088–3096, doi:10.1002/dvdy.21713.
[37]
Tandon, P.; Miteva, Y.V.; Kuchenbrod, L.M.; Cristea, I.M.; Conlon, F.L. Tcf21 regulates the specification and maturation of proepicardial cells. Development 2013, 140, 2409–2421, doi:10.1242/dev.093385.
[38]
Fransen, M.E.; Lemanski, L.F. Epicardial development in the axolotl, Ambystoma mexicanum. Anat. Rec. 1990, 226, 228–236, doi:10.1002/ar.1092260212.
[39]
Serluca, F.C. Development of the proepicardial organ in the zebrafish. Dev. Biol. 2008, 315, 18–27, doi:10.1016/j.ydbio.2007.10.007.
[40]
Liu, J.; Stainier, D.Y. Tbx5 and Bmp signaling are essential for proepicardium specification in zebrafish. Circ. Res. 2010, 106, 1818–1828, doi:10.1161/CIRCRESAHA.110.217950.
[41]
Icardo, J.M.; Guerrero, A.; Duran, A.C.; Colvee, E.; Domezain, A.; Sans-Coma, V. The development of the epicardium in the sturgeon Acipenser naccarii. Anat. Rec. 2009, 292, 1593–1601, doi:10.1002/ar.20939.
[42]
Pombal, M.A.; Carmona, R.; Megias, M.; Ruiz, A.; Perez-Pomares, J.M.; Munoz-Chapuli, R. Epicardial development in lamprey supports an evolutionary origin of the vertebrate epicardium from an ancestral pronephric external glomerulus. Evol. Dev. 2008, 10, 210–216, doi:10.1111/j.1525-142X.2008.00228.x.
[43]
Robb, L.; Mifsud, L.; Hartley, L.; Biben, C.; Copeland, N.G.; Gilbert, DJ.; Jenkins, N.A.; Harvey, R.P. Epicardin: A novel basic helix-loop-helix transcription factor gene expressed in epicardium, branchial arch myoblasts, and mesenchyme of developing lung, gut, kidney, and gonads. Dev. Dyn. 1998, 213, 105–113, doi:10.1002/(SICI)1097-0177(199809)213:1<105::AID-AJA10>3.0.CO;2-1.
[44]
Mahtab, E.A.; Wijffels, M.C.; Van Den Akker, N.M.; Hahurij, N.D.; Lie-Venema, H.; Wisse, L.J.; De Ruiter, M.C.; Uhrin, P.; Zaujec, J.; Binder, B.R.; Schalij, M.J.; Poelmann, R.E.; Gittenberger-De Groot, A.C. Cardiac malformations and myocardial abnormalities in podoplanin knockout mouse embryos: Correlation with abnormal epicardial development. Dev. Dyn. 2008, 237, 847–857, doi:10.1002/dvdy.21463.
[45]
Cano, E.; Carmona, R.; Munoz-Chamuli, R. Evolutionary origin of the pronephros. J. Dev. Biol. 2013, 1, 3–19, doi:10.3390/jdb1010003.
[46]
Schlange, T.; Schnipkoweit, I.; Andree, B.; Ebert, A.; Zile, M.H.; Arnold, H.H.; Brand, T. Chick CFC controls Lefty1 expression in the embryonic midline and nodal expression in the lateral plate. Dev. Biol. 2001, 234, 376–389, doi:10.1006/dbio.2001.0257.
[47]
Muller, P.; Rogers, K.W.; Jordan, B.M.; Lee, J.S.; Robson, D.; Ramanathan, S.; Schier, A.F. Differential diffusivity of Nodal and Lefty underlies a reaction-diffusion patterning system. Science 2012, 336, 721–724, doi:10.1126/science.1221920.
[48]
Okada, Y.; Takeda, S.; Tanaka, Y.; Izpisua Belmonte, J.C.; Hirokawa, N. Mechanism of nodal flow: A conserved symmetry breaking event in left-right axis determination. Cell 2005, 121, 633–644, doi:10.1016/j.cell.2005.04.008.
[49]
Kelly, K.A.; Wei, Y.; Mikawa, T. Cell death along the embryo midline regulates left-right sidedness. Dev. Dyn. 2002, 224, 238–244, doi:10.1002/dvdy.10098.
[50]
Lobikin, M.; Wang, G.; Xu, J.; Hsieh, Y.W.; Chuang, C.F.; Lemire, J.M.; Levin, M. Early, nonciliary role for microtubule proteins in left-right patterning is conserved across kingdoms. Proc. Natl. Acad. Sci. USA 2012, 109, 12586–12591.
[51]
Aw, S.; Levin, M. Is left-right asymmetry a form of planar cell polarity? Development 2009, 136, 355–366, doi:10.1242/dev.015974.
[52]
Dave, N.; Guaita-Esteruelas, S.; Gutarra, S.; Frias, à.; Beltran, M.; Peiró, S.; de Herreros, A.G. Functional cooperation between Snail1 and twist in the regulation of ZEB1 expression during epithelial to mesenchymal transition. J. Biol. Chem. 2011, 286, 12024–12032.
[53]
del Monte, G.; Casanova, J.C.; Guadix, J.A.; MacGrogan, D.; Burch, J.B.; Pérez-Pomares, J.M.; de la Pompa, J.L. Differential Notch signaling in the epicardium is required for cardiac inflow development and coronary vessel morphogenesis. Circ. Res. 2011, 108, 824–836, doi:10.1161/CIRCRESAHA.110.229062.
[54]
Dominguez, J.N.; Meilhac, S.M.; Bland, Y.S.; Buckingham, M.E.; Brown, N.A. Asymmetric fate of the posterior part of the second heart field results in unexpected left/right contributions to both poles of the heart. Circ. Res. 2012, 111, 1323–1335, doi:10.1161/CIRCRESAHA.112.271247.
[55]
Watanabe, Y.; Miyagawa-Tomita, S.; Vincent, S.D.; Kelly, R.G.; Moon, A.M.; Buckingham, M.E. Role of mesodermal FGF8 and FGF10 overlaps in the development of the arterial pole of the heart and pharyngeal arch arteries. Circ. Res. 2010, 106, 495–503, doi:10.1161/CIRCRESAHA.109.201665.
[56]
Lazic, S.; Scott, I.C. Mef2cb regulates late myocardial cell addition from a second heart field-like population of progenitors in zebrafish. Dev. Biol. 2011, 354, 123–133, doi:10.1016/j.ydbio.2011.03.028.
[57]
Zhou, B.; von Gise, A.; Ma, Q.; Rivera-Feliciano, J.; Pu, WT. Nkx2–5- and Isl1-expressing cardiac progenitors contribute to proepicardium. Biochem. Biophys Res. Commun. 2008, 375, 450–453, doi:10.1016/j.bbrc.2008.08.044.
[58]
Campione, M.; Ros, M.A.; Icardo, J.M.; Piedra, E.; Christoffels, V.M.; Schweickert, A.; Blum, M.; Franco, D.; Moorman, A.F. Pitx2 expression defines a left cardiac lineage of cells: Evidence for atrial and ventricular molecular isomerism in the iv/iv mice. Dev. Biol. 2001, 231, 252–264, doi:10.1006/dbio.2000.0133.
[59]
Mommersteeg, M.T.; Brown, N.A.; Prall, O.W.; de Gier-de Vries, C.; Wiese, C.; Clout, D.E.; Papaioannou, V.E.; Brown, N.A.; Harvey, R.; Moorman, A.F.; Christoffels, V.M. Pitx2c and Nkx2–5 are required for the formation and identity of the pulmonary myocardium. Circ. Res. 2007, 101, 902–909, doi:10.1161/CIRCRESAHA.107.161182.
[60]
Mommersteeg, M.T.; Hoogaars, W.M.; Prall, O.W.; de Gier-de Vries, C.; Wiese, C.; Clout, D.E.; Papaioannou, V.E.; Brown, N.A.; Harvey, R.P.; Moorman, A.F.; Christoffels, V.M. Molecular pathway for the localized formation of the sinoatrial node. Circ. Res. 2007, 100, 354–362, doi:10.1161/01.RES.0000258019.74591.b3.
[61]
Kamino, K.; Hirota, A.; Fujii, S. Localization of pacemaking activity in early embryonic heart monitored using voltage-sensitive dye. Nature 1981, 290, 595–597, doi:10.1038/290595a0.
[62]
Wang, J.; Klysik, E.; Sood, S.; Johnson, R.L.; Wehrens, X.H.; Martin, J.F. Pitx2 prevents susceptibility to atrial arrhythmias by inhibiting left-sided pacemaker specification. Proc. Natl. Acad. Sci. USA 2010, 107, 9753–9758.
[63]
Bressan, M.; Liu, G.; Mikawa, T. Early mesodermal cues assign avian cardiac pacemaker fate potential in a tertiary heart field. Science 2013, 340, 744–748, doi:10.1126/science.1232877.
[64]
Redkar, A.; Montgomery, M.; Litvin, J. Fate map of early avian cardiac progenitor cells. Development 2001, 128, 2269–2279.