Epicardial formation involves the attachment of proepicardial (PE) cells to the heart and the superficial migration of mesothelial cells over the surface of the heart. Superficial migration has long been known to involve the interaction of integrins expressed by the epicardium and their ligands expressed by the myocardium; however, little is understood about signals that maintain the mesothelium as it migrates. One signaling pathway known to regulate junctional contacts in epithelia is the PI3K/Akt signaling pathway and this pathway can be modified by integrins. Here, we tested the hypothesis that the myocardially expressed, integrin ligand VCAM-1 modulates the activity of the PI3K/Akt signaling pathway by activating the lipid phosphatase activity of PTEN. We found that epicardial cells stimulated with a soluble form of VCAM-1 (sVCAM-1) reorganized PTEN from the cytoplasm to the membrane and nucleus and activated PTEN’s lipid phosphatase activity. Chick embryonic epicardial mesothelial cells (EMCs) expressing a shRNA to PTEN increased invasion in collagen gels, but only after stimulation by TGFβ3, indicating that loss of PTEN is not sufficient to induce invasion. Expression of an activated form of PTEN was capable of blocking degradation of junctional complexes by TGFβ3. This suggested that PTEN plays a role in maintaining the mesothelial state of epicardium and not in EMT. We tested if altering PTEN activity could affect coronary vessel development and observed that embryonic chick hearts infected with a virus expressing activated human PTEN had fewer coronary vessels. Our data support a role for VCAM-1 in mediating critical steps in epicardial development through PTEN in epicardial cells.
References
[1]
Viragh, S.; Challice, C.E. The origin of the epicardium and the embryonic myocardial circulation in the mouse. Anat. Rec. 1981, 201, 157–168, doi:10.1002/ar.1092010117.
[2]
Viragh, S.; Gittenberger-de Groot, A.C.; Poelmann, R.E.; Kalman, F. Early development of quail heart epicardium and associated vascular and glandular structures. Anat. Embryol. (Berl) 1993, 188, 381–393.
[3]
Nahirney, P.C.; Mikawa, T.; Fischman, D.A. Evidence for an extracellular matrix bridge guiding proepicardial cell migration to the myocardium of chick embryos. Dev. Dyn. 2003, 227, 511–523, doi:10.1002/dvdy.10335.
[4]
Mikawa, T.; Gourdie, R.G. Pericardial mesoderm generates a population of coronary smooth muscle cells migrating into the heart along with ingrowth of the epicardial organ. Dev. Biol. 1996, 174, 221–232, doi:10.1006/dbio.1996.0068.
[5]
Dettman, R.W.; Denetclaw, W., Jr.; Ordahl, C.P.; Bristow, J. Common epicardial origin of coronary vascular smooth muscle, perivascular fibroblasts, and intermyocardial fibroblasts in the avian heart. Dev. Biol. 1998, 193, 169–181, doi:10.1006/dbio.1997.8801.
[6]
Gittenberger-de Groot, A.C.; Vrancken Peeters, M.P.; Mentink, M.M.; Gourdie, R.G.; Poelmann, R.E. Epicardium-derived cells contribute a novel population to the myocardial wall and the atrioventricular cushions. Circulation Res. 1998, 82, 1043–1052, doi:10.1161/01.RES.82.10.1043.
[7]
Perez-Pomares, J.M.; Macias, D.; Garcia-Garrido, L.; Munoz-Chapuli, R. The origin of the subepicardial mesenchyme in the avian embryo: An immunohistochemical and quail-chick chimera study. Dev. Biol. 1998, 200, 57–68, doi:10.1006/dbio.1998.8949.
[8]
Yang, J.T.; Rayburn, H.; Hynes, R.O. Cell adhesion events mediated by alpha 4 integrins are essential in placental and cardiac development. Development 1995, 121, 549–560.
[9]
Sengbusch, J.K.; He, W.; Pinco, K.A.; Yang, J.T. Dual functions of [alpha]4[beta]1 integrin in epicardial development: initial migration and long-term attachment. J. Cell. Biol. 2002, 157, 873–882, doi:10.1083/jcb.200203075.
[10]
Stepp, M.A.; Urry, L.A.; Hynes, R.O. Expression of alpha 4 integrin mRNA and protein and fibronectin in the early chicken embryo. Cell. Adhes. Commun. 1994, 2, 359–375, doi:10.3109/15419069409014210.
[11]
Dettman, R.W.; Pae, S.H.; Morabito, C.; Bristow, J. Inhibition of alpha4-integrin stimulates epicardial-mesenchymal transformation and alters migration and cell fate of epicardially derived mesenchyme. Dev. Biol. 2003, 257, 315–328, doi:10.1016/S0012-1606(03)00064-2.
[12]
Dokic, D.; Dettman, R.W. VCAM-1 inhibits TGFbeta stimulated epithelial-mesenchymal transformation by modulating Rho activity and stabilizing intercellular adhesion in epicardial mesothelial cells. Dev. Biol. 2006, 299, 489–504, doi:10.1016/j.ydbio.2006.08.054.
[13]
Osborn, L.; Hession, C.; Tizard, R.; Vassallo, C.; Luhowskyj, S.; Chi-Rosso, G.; Lobb, R. Direct expression cloning of vascular cell adhesion molecule 1, a cytokine-induced endothelial protein that binds to lymphocytes. Cell 1989, 59, 1203–1211, doi:10.1016/0092-8674(89)90775-7.
[14]
Hunkapiller, T.; Goverman, J.; Koop, B.F.; Hood, L. Implications of the diversity of the immunoglobulin gene superfamily. Cold Spring Harb. Symp. Quant. Biol. 1989, 54, 15–29, doi:10.1101/SQB.1989.054.01.004.
[15]
Muller, P.S.; Schulz, R.; Maretto, S.; Costello, I.; Srinivas, S.; Bikoff, E.; Robertson, E. The fibronectin leucine-rich repeat transmembrane protein Flrt2 is required in the epicardium to promote heart morphogenesis. Development 2011, 138, 1297–1308, doi:10.1242/dev.059386.
[16]
Kwee, L.; Baldwin, H.S.; Shen, H.M.; Stewart, C.L.; Buck, C.; Buck, C.A.; Labow, M.A. Defective development of the embryonic and extraembryonic circulatory systems in vascular cell adhesion molecule (VCAM-1) deficient mice. Development 1995, 121, 489–503.
[17]
Gurtner, G.C.; Davis, V.; Li, H.; McCoy, M.J.; Sharpe, A.; Cybulsky, M.I. Targeted disruption of the murine VCAM1 gene: essential role of VCAM-1 in chorioallantoic fusion and placentation. Genes Dev. 1995, 9, 1–14, doi:10.1101/gad.9.1.1.
[18]
Lander, R.; Nasr, T.; Ochoa, S.D.; Nordin, K.; Prasad, M.S.; Labonne, C. Interactions between Twist and other core epithelial-mesenchymal transition factors are controlled by GSK3-mediated phosphorylation. Nat. Commun. 2013, 4, 1542, doi:10.1038/ncomms2543.
[19]
Yan, D.; Avtanski, D.; Saxena, N.K.; Sharma, D. Leptin-induced epithelial-mesenchymal transition in breast cancer cells requires beta-catenin activation via Akt/GSK3- and MTA1/Wnt1 protein-dependent pathways. J. Biol. Chem. 2012, 287, 8598–8612.
[20]
Grille, S.J.; Bellacosa, A.; Upson, J.; Klein-Szanto, A.J.; van Roy, F.; Lee-Kwon, W.; Donowitz, M.; Tsichlis, P.N.; Larue, L. The protein kinase Akt induces epithelial mesenchymal transition and promotes enhanced motility and invasiveness of squamous cell carcinoma lines. Cancer Res. 2003, 63, 2172–2178.
[21]
Moore, R.; Larue, L. Cell surface molecules and truncal neural crest ontogeny: a perspective. Birth Defects Res. C Embryo Today 2004, 72, 140–150, doi:10.1002/bdrc.20014.
[22]
Bakin, A.V.; Tomlinson, A.K.; Bhowmick, N.A.; Moses, H.L.; Arteaga, C.L. Phosphatidylinositol 3-kinase function is required for transforming growth factor beta-mediated epithelial to mesenchymal transition and cell migration. J. Biol. Chem. 2000, 275, 36803–36810.
[23]
Kato, M.; Putta, S.; Wang, M.; Yuan, H.; Lanting, L.; Nair, I.; Gunn, A.; Nakagawa, Y.; Shimano, H.; Todorov, I.; Rossi, J.J.; Natarajan, R. TGF-beta activates Akt kinase through a microRNA-dependent amplifying circuit targeting PTEN. Nat. Cell. Biol. 2009, 11, 881–889, doi:10.1038/ncb1897.
[24]
Mellgren, A.M.; Smith, C.L.; Olsen, G.S.; Eskiocak, B.; Zhou, B.; Kazi, M.N.; Ruiz, F.R.; Pu, W.T.; Tallquist, M.D. Platelet-derived growth factor receptor beta signaling is required for efficient epicardial cell migration and development of two distinct coronary vascular smooth muscle cell populations. Circ. Res. 2008, 103, 1393–1401, doi:10.1161/CIRCRESAHA.108.176768.
[25]
King, W.G.; Mattaliano, M.D.; Chan, T.O.; Tsichlis, P.N.; Brugge, J.S. Phosphatidylinositol 3-kinase is required for integrin-stimulated AKT and Raf-1/mitogen-activated protein kinase pathway activation. Mol. Cell. Biol. 1997, 17, 4406–4418.
[26]
Ho, B.; Bendeck, M.P. Integrin linked kinase (ILK) expression and function in vascular smooth muscle cells. Cell. Adh. Migr. 2009, 3, 174–176, doi:10.4161/cam.3.2.7374.
[27]
White, E.S.; Thannickal, V.J.; Carskadon, S.L.; Dickie, E.G.; Livant, D.L.; Markwart, S.; Toews, G.B.; Arenberg, D.A. Integrin alpha4beta1 regulates migration across basement membranes by lung fibroblasts: a role for phosphatase and tensin homologue deleted on chromosome 10. Am. J. Respir. Crit. Care Med. 2003, 168, 436–442, doi:10.1164/rccm.200301-041OC.
[28]
Liu, Y.; Bankaitis, V.A. Phosphoinositide phosphatases in cell biology and disease. Prog. Lipid Res. 2010, 49, 201–217, doi:10.1016/j.plipres.2009.12.001.
[29]
Mulholland, D.J.; Kobayashi, N.; Ruscetti, M.; Zhi, A.; Tran, L.M.; Huang, J.; Gleave, M.; Wu, H. Pten loss and RAS/MAPK activation cooperate to promote EMT and metastasis initiated from prostate cancer stem/progenitor cells. Cancer Res. 2012, 72, 1878–1889, doi:10.1158/0008-5472.CAN-11-3132.
[30]
Wang, H.; Quah, S.Y.; Dong, J.M.; Manser, E.; Tang, J.P.; Zeng, Q. PRL-3 down-regulates PTEN expression and signals through PI3K to promote epithelial-mesenchymal transition. Cancer Res. 2007, 67, 2922–2926, doi:10.1158/0008-5472.CAN-06-3598.
[31]
Hamburger, V.; Hamilton, H.L. A series of normal stages in the development of the chick embryo. J. Morphol. 1951, 88, 49–92, doi:10.1002/jmor.1050880104.
[32]
Cross, E.E.; Thomason, R.T.; Martinez, M.; Hopkins, C.R.; Hong, C.C.; Bader, D.M. Application of small organic molecules reveals cooperative TGFbeta and BMP regulation of mesothelial cell behaviors. ACS Chem. Biol. 2011, 6, 952–961, doi:10.1021/cb200205z.
[33]
Eid, H.; de Bold, M.L.; Chen, J.H.; de Bold, A.J. Epicardial mesothelial cells synthesize and release endothelin. J. Cardiovasc. Pharmacol. 1994, 24, 715–720, doi:10.1097/00005344-199424050-00005.
[34]
Eid, H.; Larson, D.M.; Springhorn, J.P.; Attawia, M.A.; Nayak, R.C.; Smith, T.W.; Kelly, R.A. Role of epicardial mesothelial cells in the modification of phenotype and function of adult rat ventricular myocytes in primary coculture. Circ. Res. 1992, 71, 40–50, doi:10.1161/01.RES.71.1.40.
Huang, Y.; Hickey, R.P.; Yeh, J.L.; Liu, D.; Dadak, A.; Young, L.H.; Johnson, R.S.; Giordano, F.J. Cardiac myocyte-specific HIF-1alpha deletion alters vascularization, energy availability, calcium flux, and contractility in the normoxic heart. FASEB J. 2004, 18, 1138–1140.
[37]
Getsios, S.; Huen, A.C.; Green, K.J. Working out the strength and flexibility of desmosomes. Nat. Rev. Mol. Cell. Biol. 2004, 5, 271–281, doi:10.1038/nrm1356.
[38]
Das, S.; Dixon, J.E.; Cho, W. Membrane-binding and activation mechanism of PTEN. Proc. Natl. Acad. Sci. USA 2003, 100, 7491–7496, doi:10.1073/pnas.0932835100.
[39]
Gjorloff-Wingren, A.; Saxena, M.; Han, S.; Wang, X.; Alonso, A.; Renedo, M.; Oh, P.; Williams, S.; Schnitzer, J.; Mustelin, T. Subcellular localization of intracellular protein tyrosine phosphatases in T cells. Eur J. Immunol. 2000, 30, 2412–2421, doi:10.1002/1521-4141(2000)30:8<2412::AID-IMMU2412>3.0.CO;2-J.
[40]
Sechi, A.S.; Wehland, J. The actin cytoskeleton and plasma membrane connection: PtdIns(4,5)P(2) influences cytoskeletal protein activity at the plasma membrane. J. Cell. Sci. 2000, 113, 3685–3695.
[41]
Takenawa, T.; Itoh, T. Phosphoinositides, key molecules for regulation of actin cytoskeletal organization and membrane traffic from the plasma membrane. Biochim. Biophys. Acta. 2001, 1533, 190–206.
Liu, J.; Zuo, X.; Yue, P.; Guo, W. Phosphatidylinositol 4,5-bisphosphate mediates the targeting of the exocyst to the plasma membrane for exocytosis in mammalian cells. Mol. Biol. Cell. 2007, 18, 4483–4492, doi:10.1091/mbc.E07-05-0461.
[44]
Sutherland, C.; Leighton, I.A.; Cohen, P. Inactivation of glycogen synthase kinase-3 beta by phosphorylation: new kinase connections in insulin and growth-factor signalling. Biochem. J. 1993, 296, 15–19.
[45]
Frame, S.; Cohen, P.; Biondi, R.M. A common phosphate binding site explains the unique substrate specificity of GSK3 and its inactivation by phosphorylation. Mol. Cell. 2001, 7, 1321–1327, doi:10.1016/S1097-2765(01)00253-2.
[46]
Piao, S.; Lee, S.H.; Kim, H.; Yum, S.; Stamos, J.L.; Xu, Y.; Lee, S.J.; Lee, J.; Oh, S.; Han, J.K.; Park, B.J.; Weis, W.I.; Ha, N.C. Direct inhibition of GSK3beta by the phosphorylated cytoplasmic domain of LRP6 in Wnt/beta-catenin signaling. PLoS One 2008, 3, e4046, doi:10.1371/journal.pone.0004046.
[47]
Guadix, J.A.; Ruiz-Villalba, A.; Lettice, L.; Velecela, V.; Munoz-Chapuli, R.; Hastie, N.D.; Perez-Pomares, J.M.; Martinez-Estrada, O.M. Wt1 controls retinoic acid signalling in embryonic epicardium through transcriptional activation of Raldh2. Development 2011, 138, 1093–1097, doi:10.1242/dev.044594.
[48]
Merki, E.; Zamora, M.; Raya, A.; Kawakami, Y.; Wang, J.; Zhang, X.; Burch, J.; Kubalak, S.W.; Kaliman, P.; Belmonte, J.C.; Chien, K.R.; Ruiz-Lozano, P. Epicardial retinoid X receptor alpha is required for myocardial growth and coronary artery formation. Proc. Natl. Acad. Sci. USA 2005, 102, 18455–18460, doi:10.1073/pnas.0504343102.
[49]
Kim, S.E.; Lee, W.J.; Choi, K.Y. The PI3 kinase-Akt pathway mediates Wnt3a-induced proliferation. Cell. Signal. 2007, 19, 511–518, doi:10.1016/j.cellsig.2006.08.008.
[50]
Sonderegger, S.; Haslinger, P.; Sabri, A.; Leisser, C.; Otten, J.V.; Fiala, C.; Knofler, M. Wingless (Wnt)-3A induces trophoblast migration and matrix metalloproteinase-2 secretion through canonical Wnt signaling and protein kinase B/AKT activation. Endocrinology 2010, 151, 211–220, doi:10.1210/en.2009-0557.
[51]
Schill, N.J.; Anderson, R.A. Out, in and back again: PtdIns(4,5)P(2) regulates cadherin trafficking in epithelial morphogenesis. Biochem J. 2009, 418, 247–260, doi:10.1042/BJ20081844.
[52]
Ling, K.; Bairstow, S.F.; Carbonara, C.; Turbin, D.A.; Huntsman, D.G.; Anderson, R.A. Type I gamma phosphatidylinositol phosphate kinase modulates adherens junction and E-cadherin trafficking via a direct interaction with mu 1B adaptin. J. Cell. Biol. 2007, 176, 343–353.
[53]
Wang, Y.; Lian, L.; Golden, J.A.; Morrisey, E.E.; Abrams, C.S. PIP5KI gamma is required for cardiovascular and neuronal development. Proc. Natl. Acad. Sci. USA 2007, 104, 11748–11753, doi:10.1073/pnas.0700019104.
[54]
Lipschutz, J.H.; Mostov, K.E. Exocytosis: the many masters of the exocyst. Curr. Biol. 2002, 12, R212–R214, doi:10.1016/S0960-9822(02)00753-4.
[55]
He, B.; Xi, F.; Zhang, X.; Zhang, J.; Guo, W. Exo70 interacts with phospholipids and mediates the targeting of the exocyst to the plasma membrane. EMBO J. 2007, 26, 4053–4065, doi:10.1038/sj.emboj.7601834.
[56]
Bershadsky, A. Magic touch: how does cell-cell adhesion trigger actin assembly? Trends Cell. Biol. 2004, 14, 589–593, doi:10.1016/j.tcb.2004.09.009.
[57]
Janmey, P.A.; Stossel, T.P. Gelsolin-polyphosphoinositide interaction. Full expression of gelsolin-inhibiting function by polyphosphoinositides in vesicular form and inactivation by dilution, aggregation, or masking of the inositol head group. J. Biol. Chem. 1989, 264, 4825–4831.
[58]
Li, Z.; Dong, X.; Wang, Z.; Liu, W.; Deng, N.; Ding, Y.; Tang, L.; Hla, T.; Zeng, R.; Li, L.; Wu, D. Regulation of PTEN by Rho small GTPases. Nat. Cell. Biol. 2005, 7, 399–404, doi:10.1038/ncb1236.
[59]
Lima-Fernandes, E.; Enslen, H.; Camand, E.; Kotelevets, L.; Boularan, C.; Achour, L.; Benmerah, A.; Gibson, L.C.; Baillie, G.S.; Pitcher, J.A.; Chastre, E.; Etienne-Manneville, S.; Marullo, S.; Scott, M.G. Distinct functional outputs of PTEN signalling are controlled by dynamic association with beta-arrestins. EMBO J. 2011, 30, 2557–2568, doi:10.1038/emboj.2011.178.
[60]
Papakonstanti, E.A.; Ridley, A.J.; Vanhaesebroeck, B. The p110delta isoform of PI 3-kinase negatively controls RhoA and PTEN. EMBO J. 2007, 26, 3050–3061, doi:10.1038/sj.emboj.7601763.