Microsurgical Procedures for Studying the Developmental Significance of the Proepicardium and Epicardium in Avian Embryos: PE-Blocking, PE-Photoablation, and PE-Grafting
The epicardium is the outer skin of the mature vertebrate heart. Its embryonic origin and its possible roles in the developing and mature heart did not receive much recognition during the 19th and most of the 20th century. During the past 25 years, however, the epicardium came into the focus of developmental biology and regenerative medicine. Clinical researchers usually prefer genetically modified mouse models when they want to gain insight into developmental or pathological processes. The story of research on the embryonic epicardium, however, nicely demonstrates the value of non-mammalian species, namely avian species, for elucidating fundamental processes in embryonic and fetal development. Studies on chick and quail embryos have not only led to the identification of the primarily extracardiac source of the epicardium—presently called the proepicardium (PE)—they have also significantly contributed to our current knowledge about the developmental significance of the embryonic epicardium. In this review article, I describe three “classical” microsurgical experiments that have been developed for studying the developmental significance of the PE/epicardium in avian embryos (mechanical PE-blocking, PE-photoablation, orthotopic PE-grafting). Furthermore, I show how these microsurgical experiments have contributed to our current knowledge about the roles of the PE/epicardium in cardiac development. There are still some unsolved aspects in the physiology of the developing epicardium, which may be clarified with the aid of these “classical” microsurgical experiments.
References
[1]
Remak, R. über die Entwicklung des Hühnchens im Ei. Arch. Anat. Physiol. Wiss. Med. Jahrg. 1843, 478–484.
[2]
Kurkiewicz, T. O histogenezie miesna sercowego zwierzat kregowych—Zur Histogenese des Herzmuskels der Wirbeltiere. Bull. Int. Acad. Sci. Cracovie 1909, 148–191.
[3]
M?nner, J. Experimental study on the formation of the epicardium in chick embryos. Anat. Embryol. (Berl). 1993, 187, 281–289, doi:10.1007/BF00195766.
[4]
M?nner, J.; Pérez–Pomares, J.M.; Macias, D.; Mu?oz–Chápuli, R. The origin, formation, and developmental significance of the epicardium: A review. Cells Tissues Organs 2001, 169, 89–103, doi:10.1159/000047867.
[5]
M?nner, J. The development of pericardial villi in the chick embryos. Anat. Embryol. (Berl). 1992, 186, 397–385, doi:10.1007/BF00185988.
[6]
Gittenberger–de Groot, A.C.; Vrancken Peeters, M.P.; Bergwerff, M.; Mentink, M.M.; Poelmann, R.E. Epicardial outgrowth inhibition leads to compensatory mesothelial outflow tract collar and abnormal cardiac septation and coronary formation. Circ. Res. 2000, 87, 969–971, doi:10.1161/01.RES.87.11.969.
[7]
Hamburger, V.; Hamilton, H.L. A series of normal stages in the development of the chick embryo. J. Morphol. 1951, 88, 49–92.
[8]
Hara, K. Micro-surgical operation on the chick embryo in ovo without vital staining. A modification of the intra-coelomic grafting technique. Mikroskopie 1971, 27, 267–270.
[9]
Steding, G.; Klemeyer, L. Die Entwicklung der Perikardfalte des Hühnerembryo. Z. Anat. Entwicklungsgesch. 1969, 129, 223–233.
[10]
Pérez–Pomares, J.M.; Phelps, A.; Mu?oz–Chápuli, R.; Wessels, A. The contribution of the proepicardium to avian cardiovascular development. Int. J. Dev. Biol. 2001, 45, S155–S156.
[11]
Pérez–Pomares, J.M.; Phelps, A.; Sedmerova, M.; Carmona, R.; González–Iriarte, M.; Mu?oz–Chápuli, R.; Wessels, A. Experimental studies on the spatiotemporal expression of WT1 and RALDH2 in the embryonic avian heart: a model for the regulation of myocardial and valvuloseptal development by epicardially derived cells (EPDCs). Dev. Biol. 2002, 247, 307–326, doi:10.1006/dbio.2002.0706.
[12]
Gittenberger–de Groot, A.C.; Eralp, I.; Lie–Venema, H.; Bartelings, M.M.; Poelmann, R.E. Development of the coronary vasculature and its implications for coronary abnormalities in general and specifically in pulmonary atresia without ventricular septal defect. Acta Paediatr. Suppl. 2004, 93, 13–19.
[13]
Eralp, I.; Lie–Venema, H.; DeRuiter, M.C.; van den Akker, N.M.S.; Bogers, A.J.J.C.; Mentink, M.M.T.; Maas, S.; Poelmann, R.E.; Gittenberger–de Groot, A.C. Coronary artery and orifice development is associated with proper timing of epicardial outgrowth and correlated Fas ligand associated apoptosis patterns. Circ. Res. 2005, 96, 526–534.
[14]
Poelmann, R.E.; Lie–Venema, H.; Gittenberger–de Groot, A.C. The role of the epicardium and neural crest as extracardiac contributors to coronary vascular development. Tex. Heart Inst. J. 2002, 29, 255–261.
[15]
Pennisi, D.J.; Ballard, V.L.T.; Mikawa, T. Epicardium is required for the full rate of myocyte proliferation and levels of expression of myocyte mitogenic factors FGF2 and its receptor, FGFR–1, but not for transmural myocardial patterning in the chick embryo heart. Dev. Dyn. 2003, 228, 161–172.
[16]
Weeke–Klimp, A.; Bax, N.A.; Bellu, A.R.; Winter, E.M.; Vrolijk, J.; Plantinga, J.; Maas, S.; Brinker, M.; Mahtab, E.A.; Gittenberger–de Groot, A.C.; et al. Epicardium–derived cells enhance proliferation, cellular maturation and alignment of cardiomyocytes. J. Mol. Cell. Cardiol. 2010, 49, 606–616.
[17]
Eralp, I.; Lie–Venema, H.; Bax, N.A.; Wijffels, M.C.; van der Laarse, A.; DeRuiter, M.C.; Bogers, A.J.; van den Akker, N.M.; Gourdie, R.G.; Schalij, M.J.; et al. Epicardium–derived cells are important for correct development of the Purkinje fibers in the avian heart. Anat. Rec. A. 2006, 288, 1272–1280.
[18]
Rothenberg, F.; Hitomi, M.; Fisher, S.A.; Watanabe, M. Initiation of apotosis in the developing avian outflow tract myocardium. Dev. Dyn. 2002, 223, 469–482, doi:10.1002/dvdy.10077.
[19]
Kolditz, D.P.; Wijffels, M.C.; Blom, N.A.; van der Laarse, A.; Hahurij, N.D.; Lie–Venema, H.; Markwald, R.R.; Poelmann, R.E.; Schalij, M.J.; Gittenberger–de Groot, A.C. Epicardium–derived cells in development of annulus fibrosis and persistence of accessory pathways. Circulation 2008, 117, 1508–1517, doi:10.1161/CIRCULATIONAHA.107.726315.
[20]
Lie–Venema, H.; Eralp, I.; Markwald, R.R.; van den Akker, N.M.; Wijffels, M.C.; Kolditz, D.P.; van der Laarse, A.; Schalij, M.J.; Poelmann, R.E.; Bogers, A.J.; et al. Periostin expression by epicardium–derived cells is involved in the development of the atrioventricular valves and fibrous heart skeleton. Differ. 2008, 76, 809–819.
[21]
M?nner, J.; Schlueter, J.; Brand, T. Experimental analyses of the function of the proepicardium using a new microsurgical procedure to induce loss–of–proepicardial–function in chick embryos. Dev. Dyn. 2005, 233, 1454–1463, doi:10.1002/dvdy.20487.
[22]
Le Douarin, N.M. Developmental patterning deciphered in avian chimeras. Dev. Growth Differ. 2008, 50, S11–S28, doi:10.1111/j.1440-169X.2008.00989.x.
[23]
Le Douarin, N.M.; Dieterlen–Lièvre, F. How studies on the avian embryo have opened new avenues in the understanding of development: A view about the neural and hematopoietic systems. Dev. Growth Differ. 2013, 55, 1–14, doi:10.1111/dgd.12015.
[24]
Poelmann, R.E.; Gittenberger–de Groot, A.C.; Mentink, M.M.; B?kenkamp, R.; Hogers, B. Development of the cardiac coronary vascular endothelium, studied with antiendothelial antibodies, in chicken–quail chimeras. Circ. Res. 1993, 73, 559–568, doi:10.1161/01.RES.73.3.559.
[25]
Gittenberger–de Groot, A.C.; Vrancken Peeters, M.P.; Mentink, M.M.; Gourdie, R.G.; Poelmann, R.E. Epicardium–derived cells contribute a novel population to the myocardial wall and the atrioventricular cushions. Circ. Res. 1998, 82, 1043–1052, doi:10.1161/01.RES.82.10.1043.
[26]
Pérez–Pomares, J.M.; Macías, D.; García–Garrido, L.; Mu?oz–Chápuli, R. The origin of the subepicardial mesenchyme in the avian embryo: An immunohistochemical and quail–chick chimera study. Dev. Biol. 1998, 200, 57–68, doi:10.1006/dbio.1998.8949.
[27]
Lie–Venema, H.; Eralp, I.; Maas, S.; Gittenberger–de Groot, A.C.; Poelmann, R.E.; DeRuiter, M.C. Myocardial heterogeneity in permissiveness for epicardium–derived cells and endothelial precursor cells along the developing heart tube at the onset of coronary vascularization. Anat. Rec. A. 2005, 282, 120–129.
[28]
M?nner, J. Does the subepicardial mesenchyme contribute myocardioblasts to the myocardium of the chick embryo heart? A quail–chick chimera study tracing the fate of the epicardial primordium. Anat. Rec. 1999, 255, 212–226, doi:10.1002/(SICI)1097-0185(19990601)255:2<212::AID-AR11>3.0.CO;2-X.
[29]
M?nner, J. Embryology of congenital ventriculo–coronary communications: a study on quail–chick chimeras. Cardiol. Young 2000, 10, 233–238, doi:10.1017/S1047951100009161.
Pérez–Pomares, J.M.; Carmona, R.; González–Iriarte, M.; Atencia, G.; Wessels, A.; Mu?oz–Chápuli, R. Origin of coronary endothelial cells from epicardial mesothelium in avian embryos. Int. J. Dev. Biol. 2002, 46, 1005–1013.
[32]
Pérez–Pomares, J.M.; Phelps, A.; Sedmerova, M.; Wessels, A. Epicardial–like cells on the distal arterial end of the cardiac outflow tract do not derive from the proepicardium but are derivatives of the cephalic pericardium. Dev. Dyn. 2003, 227, 56–68, doi:10.1002/dvdy.10284.
[33]
de Lange, F.J.; Moorman, A.F.; Anderson, R.H.; M?nner, J.; Soufan, A.T.; de Gier–de Vries, C.; Schneider, M.D.; Webb, S.; van den Hoff, M.J.; Christoffels, V.M. Lineage and morphogenetic analysis of the cardiac valves. Circ. Res. 2004, 95, 645–654.
[34]
Wilting, J.; Buttler, K.; Schulte, I.; Papoutsi, M.; Schweigerer, L.; M?nner, J. The proepicardium delivers hemangioblasts but not lymphangioblasts to the developing heart. Dev. Biol. 2007, 305, 451–459.
[35]
Cai, C.L.; Martin, J.C.; Sun, Y.; Cui, L.; Wang, L.; Ouyang, K.; Yang, L.; Bu, L.; Liang, X.; Zhang, X.; et al. A myocardial lineage derives from Tbx18 epicardial cells. Nature 2008, 454, 104–108.
[36]
Zhou, B.; Ma, Q.; Rajagopal, S.; Wu, S.M.; Domian, I.; Rivera–Feliciano, J.; Jiang, D.; von Gise, A.; Ikeda, S.; Chien, K.R.; Pu, W.T. Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nat. 2008, 454, 109–113.
[37]
Christoffels, V.M.; Grieskamp, T.; Norden, J.; Mommersteeg, M.T.; Rudat, C.; Kispert, A. Tbx18 and the fate of epicardial progenitors. Nat. 2009, 458, E8–E9.
[38]
Rudat, C.; Kispert, A. Wt1 and epicardial fate mapping. Circ. Res. 2012, 111, 165–169, doi:10.1161/CIRCRESAHA.112.273946.
Mikawa, T.; Gourdie, R.G. Pericardial mesoderm generates a population of coronary smooth muscle cells migrating into the heart along with ingrowth of the epicardial organ. Dev. Biol. 1996, 174, 221–232, doi:10.1006/dbio.1996.0068.
[42]
Guadix, J.A.; Carmona, R.; Mu?oz–Chápuli, R.; Pérez–Pomares, J.M. In vivo and in vitro analysis of the vasculogenic potential of avian propeicardiial and epicardial cells. Dev. Dyn. 2006, 235, 1014–1026, doi:10.1002/dvdy.20685.
[43]
Cosette, S.; Misra, R. The identification of different endothelial cell populations within the mouse proepicardium. Dev. Dyn. 2011, 240, 2344–2353, doi:10.1002/dvdy.22724.
[44]
Katz, T.C.; Singh, M.K.; Degenhardt, K.; Rivera–Feliciano, J.; Johnson, R.L.; Epstein, J.A.; Tabin, C.J. Distinct compartments of the proepicardial organ give rise to coronary endothelial cells. Dev. Cell. 2012, 22, 639–650, doi:10.1016/j.devcel.2012.01.012.
[45]
Stern, C. The chick: a great model system becomes even greater. Dev. Cell. 2005, 8, 9–17.
[46]
Coleman, C.M. Chicken embryos as model for regenerative medicine. Birth Defects Res. Part C. 2008, 84, 245–256, doi:10.1002/bdrc.20133.
[47]
Poynter, G.; Huss, D.; Lansford, R. Japanese quail: An efficient animal model for the production of transgenic avians. Cold Spring Harb. Protoc. 2009, doi:10.1101/pdb.emo112.
[48]
M?nner, J. Extracardiac tissues and the epigenetic control of myocardial development in vertebrate embryos. Ann. Anat. 2006, 188, 199–212, doi:10.1016/j.aanat.2006.01.008.
[49]
Smith, T.K.; Bader, D.M. Signals from both sides: Control of cardiac development by the endocardium and epicardium. Semin. Cell. Dev. Biol. 2007, 18, 84–89, doi:10.1016/j.semcdb.2006.12.013.
[50]
Chapman, S.C.; Lawson, A.; Mac Arthur, W.C.; Wiese, R.J.; Loechel, R.H.; Burgos–Trinidad, M.; Wakefield, J.K.; Ramabhadran, R.; Mauch, T.J.; Schoenwolf, G.C. Ubiquitous GFP expression in transgenic chickens using a lentiviral vector. Dev. 2005, 132, 935–940, doi:10.1242/dev.01652.
[51]
Iacobellis, G.; Malavazos, A.E.; Corsi, M.M. Epicardial fat: from the biomolecular aspects to the clinical practice. Int. J. Biochem. Cell. Biol. 2011, 43, 1651–1654, doi:10.1016/j.biocel.2011.09.006.
[52]
Sacks, H.S.; Fain, J.N. Human epicardial fat: What is new and what is missing? Clin. Exp. Pharmacol. Physiol. 2011, 38, 879–887, doi:10.1111/j.1440-1681.2011.05601.x.