The proepicardium is a transient extracardiac embryonic tissue that gives rise to the epicardium and a number of coronary vascular cell lineages. This important extracardiac tissue develops through multiple steps of inductive events, from specification of multiple cell lineages to morphogenesis. This article will review our current understanding of inductive events involved in patterning of the proepicardium precursor field, specification of cell types within the proepicardium and their extension and attachment to the heart.
References
[1]
Mikawa, T.; Gourdie, R.G. Pericardial mesoderm generates a population of coronary smooth muscle cells migrating into the heart along with ingrowth of the epicardial organ. Dev. Biol. 1996, 174, 221–232, doi:10.1006/dbio.1996.0068.
[2]
Manasek, F.J. Embryonic development of the heart. II. Formation of the epicardium. J. Embryol. Exp. Morphol. 1969, 22, 333–348.
[3]
Nahirney, P.C.; Mikawa, T.; Fischman, D.A. Evidence for an extracellular matrix bridge guiding proepicardial cell migration to the myocardium of chick embryos. Dev. Dyn. 2003, 227, 511–523, doi:10.1002/dvdy.10335.
[4]
Dettman, R.W.; Denetclaw, W.; Ordahl, C.P.; Bristow, J. Common epicardial origin of coronary vascular smooth muscle, perivascular fibroblasts, and intermyocardial fibroblasts in the avian heart. Dev. Biol. 1998, 193, 169–181, doi:10.1006/dbio.1997.8801.
[5]
Tomanek, R.J.; Hansen, H.K.; Dedkov, E.I. Vascular patterning of the quail coronary system during development. Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 2006, 288, 989–999.
[6]
Schlueter, J.; M?nner, J.; Brand, T. BMP is an important regulator of proepicardial identity in the chick embryo. Dev. Biol. 2006, 295, 546–558, doi:10.1016/j.ydbio.2006.03.036.
[7]
Zhou, B.; von Gise, A.; Ma, Q.; Rivera-Feliciano, J.; Pu, W.T. Nkx2-5- and Isl1-expressing cardiac progenitors contribute to proepicardium. Biochem. Biophys. Res. Commun. 2008, 375, 450–453, doi:10.1016/j.bbrc.2008.08.044.
[8]
Cai, C.-L.; Martin, J.C.; Sun, Y.; Cui, L.; Wang, L.; Ouyang, K.; Yang, L.; Bu, L.; Liang, X.; Zhang, X.; et al. A myocardial lineage derives from Tbx18 epicardial cells. Nature 2008, 454, 104–108, doi:10.1038/nature06969.
[9]
Christoffels, V.M.; Grieskamp, T.; Norden, J.; Mommersteeg, M.T.M.; Rudat, C.; Kispert, A. Tbx18 and the fate of epicardial progenitors. Nature 2009, 458, E8–E9, doi:10.1038/nature07916.
[10]
Kikuchi, K.; Holdway, J.E.; Major, R.J.; Blum, N.; Dahn, R.D.; Begemann, G.; Poss, K.D. Retinoic Acid Production by Endocardium and Epicardium Is an Injury Response Essential for Zebrafish Heart Regeneration. Dev. Cell 2011, 20, 397–404, doi:10.1016/j.devcel.2011.01.010.
[11]
Cai, C.-L.; Liang, X.; Shi, Y.; Chu, P.-H.; Pfaff, S.L.; Chen, J.; Evans, S. Isl1 Identifies a Cardiac Progenitor Population that Proliferates Prior to Differentiation and Contributes a Majority of Cells to the Heart. Dev. Cell 2003, 5, 877–889, doi:10.1016/S1534-5807(03)00363-0.
[12]
Abu-Issa, R.; Kirby, M.L. Patterning of the heart field in the chick. Dev. Biol. 2008, 319, 223–233, doi:10.1016/j.ydbio.2008.04.014.
[13]
Serluca, F.C. Development of the proepicardial organ in the zebrafish. Dev. Biol. 2008, 315, 18–27, doi:10.1016/j.ydbio.2007.10.007.
[14]
Bressan, M.; Liu, G.; Mikawa, T. Early mesodermal cues assign avian cardiac pacemaker fate potential in a tertiary heart field. Science 2013, 340, 744–748, doi:10.1126/science.1232877.
[15]
Carmona, R.; Gonzalez-Iriarte, M.; Perez-Pomares, J.M.; Munoz-Chapuli, R. Localization of the Wilms' tumour protein WT1 in avian embryos. Cell Tissue Res. 2001, 303, 173–186, doi:10.1007/s004410000307.
[16]
Katz, T.C.; Singh, M.K.; Degenhardt, K.; Rivera-Feliciano, J.; Johnson, R.L.; Epstein, J.A.; Tabin, C.J. Distinct compartments of the proepicardial organ give rise to coronary vascular endothelial cells. Dev. Cell 2012, 22, 639–650, doi:10.1016/j.devcel.2012.01.012.
[17]
Manner, J.; Perez-Pomares, J.M.; Macias, D.; Munoz-Chapuli, R. The origin, formation and developmental significance of the epicardium: A review. Cell Tissues Organs 2001, 169, 89–103, doi:10.1159/000047867.
[18]
Ishii, Y.; Langberg, J.D.; Hurtado, R.; Lee, S.; Mikawa, T. Induction of proepicardial marker gene expression by the liver bud. Development 2007, 134, 3627–3637, doi:10.1242/dev.005280.
[19]
Liu, J.; Stainier, D.Y.R. Tbx5 and Bmp Signaling Are Essential for Proepicardium Specification in Zebrafish. Circ. Res. 2010, 106, 1818–1828, doi:10.1161/CIRCRESAHA.110.217950.
[20]
Isaac, A. Control of Vertebrate Left-Right Asymmetry by a Snail-Related Zinc Finger Gene. Science 1997, 275, 1301–1304, doi:10.1126/science.275.5304.1301.
[21]
Schlueter, J.; Brand, T. A right-sided pathway involving FGF8/Snai1 controls asymmetric development of the proepicardium in the chick embryo. Proc. Natl. Acad. Sci. USA 2009, 106, 7485–7490, doi:10.1073/pnas.0811944106.
[22]
Hatcher, C.J. A role for Tbx5 in proepicardial cell migration during cardiogenesis. Physiol. Genomics 2004, 18, 129–140, doi:10.1152/physiolgenomics.00060.2004.
Jenkins, S.J.; Hutson, D.R.; Kubalak, S.W. Analysis of the proepicardium-epicardium transition during the malformation of theRXRα?/? epicardium. Dev. Dyn. 2005, 233, 1091–1101, doi:10.1002/dvdy.20393.
[25]
Torlopp, A.; Schlueter, J.; Brand, T. Role of fibroblast growth factor signaling during proepicardium formation in the chick embryo. Dev. Dyn. 2010, 239, 2393–2403, doi:10.1002/dvdy.22384.
[26]
Li, W.E.I.; Waldo, K.; Linask, K.L.; Chen, T.; Wessels, A.; Parmacek, M.S.; Kirby, M.L.; Lo, C.W. An essential role for connexin43 gap junctions in mouse coronary artery development. Development 2002, 129, 2031–2042.
[27]
Ishii, Y.; Garriock, R.J.; Navetta, A.M.; Coughlin, L.E.; Mikawa, T. BMP signals promote proepicardial protrusion necessary for recruitment of coronary vessel and epicardial progenitors to the heart. Dev. Cell 2010, 19, 307–316, doi:10.1016/j.devcel.2010.07.017.
[28]
Yang, J.T.; Rayburn, H.; Hynes, R.O. Cell adhesion events mediated by alpha 4 integrins are essential in placental and cardiac development. Development 1995, 121, 549–560.
[29]
Kwee, L.; Baldwin, H.S.; Shen, H.M.; Stewart, C.L.; Buck, C.; Buck, C.A.; Labow, M.A. Defective development of the embryonic and extraembryonic circulatory systems in vascular cell adhesion molecule (VCAM-1) deficient mice. Development 1995, 121, 489–503.
[30]
Mikawa, T.; Fischman, D.A. Retroviral analysis of cardiac morphogenesis: discontinuous formation of coronary vessels. Proc. Natl. Acad. Sci. USA 1992, 89, 9504–9508, doi:10.1073/pnas.89.20.9504.
[31]
Gittenberger-de Groot, A.C.; Vrancken Peeters, M.P.; Mentink, M.M.; Gourdie, R.G.; Poelmann, R.E. Epicardium-derived cells contribute a novel population to the myocardial wall and the atrioventricular cushions. Circ. Res. 1998, 82, 1043–1052, doi:10.1161/01.RES.82.10.1043.
[32]
M?nner, J. Does the subepicardial mesenchyme contribute myocardioblasts to the myocardium of the chick embryo heart? A quail-chick chimera study tracing the fate of the epicardial primordium. Anat. Rec. 1999, 255, 212–226, doi:10.1002/(SICI)1097-0185(19990601)255:2<212::AID-AR11>3.0.CO;2-X.
[33]
Guadix, J.A.; Carmona, R.; Mu?oz-Chápuli, R.; Pérez-Pomares, J.M. In vivo and in vitro analysis of the vasculogenic potential of avian proepicardial and epicardial cells. Dev. Dyn. 2006, 235, 1014–1026, doi:10.1002/dvdy.20685.
[34]
Poelmann, R.E.; Gittenberger-de Groot, A.C.; Mentink, M.M.; B?kenkamp, R.; Hogers, B. Development of the cardiac coronary vascular endothelium, studied with antiendothelial antibodies, in chicken-quail chimeras. Circ. Res. 1993, 73, 559–568, doi:10.1161/01.RES.73.3.559.
[35]
Wilting, J.; Buttler, K.; Schulte, I.; Papoutsi, M.; Schweigerer, L.; M?nner, J. The proepicardium delivers hemangioblasts but not lymphangioblasts to the developing heart. Dev. Biol. 2007, 305, 451–459, doi:10.1016/j.ydbio.2007.02.026.
[36]
Red-Horse, K.; Ueno, H.; Weissman, I.L.; Krasnow, M.A. Coronary arteries form by developmental reprogramming of venous cells. Nature 2010, 464, 549–553, doi:10.1038/nature08873.
[37]
Wu, B.; Zhang, Z.; Lui, W.; Chen, X.; Wang, Y.; Chamberlain, A.A.; Moreno-Rodriguez, R.A.; Markwald, R.R.; O'Rourke, B.P.; Sharp, D.J.; et al. Endocardial cells form the coronary arteries by angiogenesis through myocardial-endocardial VEGF signaling. Cell 2012, 151, 1083–1096, doi:10.1016/j.cell.2012.10.023.
Ishii, Y.; Langberg, J.; Rosborough, K.; Mikawa, T. Endothelial cell lineages of the heart. Cell Tissue Res. 2009, 335, 67–73, doi:10.1007/s00441-008-0663-z.
[40]
Kruithof, B.P.T.; van Wijk, B.; Somi, S.; Kruithof-de Julio, M.; Pérez Pomares, J.M.; Weesie, F.; Wessels, A.; Moorman, A.F.M.; van den Hoff, M.J.B. BMP and FGF regulate the differentiation of multipotential pericardial mesoderm into the myocardial or epicardial lineage. Dev. Biol. 2006, 295, 507–522, doi:10.1016/j.ydbio.2006.03.033.
[41]
Azambuja, A.P.; Portillo-Sánchez, V.; Rodrigues, M.V.; Omae, S.V.; Schechtman, D.; Strauss, B.E.; Costanzi-Strauss, E.; Krieger, J.E.; Pérez-Pomares, J.M.; Xavier-Neto, J. Retinoic acid and VEGF delay smooth muscle relative to endothelial differentiation to coordinate inner and outer coronary vessel wall morphogenesis. Circ. Res. 2010, 107, 204–216, doi:10.1161/CIRCRESAHA.109.214650.
[42]
Acharya, A.; Baek, S.T.; Huang, G.; Eskiocak, B.; Goetsch, S.; Sung, C.Y.; Banfi, S.; Sauer, M.F.; Olsen, G.S.; Duffield, J.S.; et al. The bHLH transcription factor Tcf21 is required for lineage-specific EMT of cardiac fibroblast progenitors. Development 2012, 139, 2139–2149, doi:10.1242/dev.079970.
[43]
Zamora, M.; M?nner, J.; Ruiz-Lozano, P. Epicardium-derived progenitor cells require beta-catenin for coronary artery formation. Proc. Natl. Acad. Sci. USA 2007, 104, 18109–18114, doi:10.1073/pnas.0702415104.